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Abstract

Precise measurement of physical quantities underpins much of modern science and tech-
nology. Examples include length and time (satellite navigation), rotation and acceleration
(guidance systems), electromagnetic (magnetic resonance imaging) and gravitational fields
(mineral exploration). Currently, precision measurement of many physically and practi-
cally interesting quantities - such as the fine structure constant, the local gravitational field
or any inertial acceleration - can be accomplished by atom interferometry [1]. Using cold
atom interferometers may enable yet more precision, but this precision will be limited by
atomic shot noise. Atomic shot noise, which is a fluctuation in the atomic density, arises
because atoms are discrete. This fluctuation will affect precision when counting the atoms
in a cloud, as is done in atomic interferometry. In this thesis, atomic shot noise was clearly
and quantitatively measured in cold rubidium 87 atomic clouds using the absorption imag-
ing technique. This was achieved by minimizing all possible sources of classical noise from
the imaging setup, then binning the pixels together to overcome blurring effects. These
blurring effects can be due to the velocity distribution of the atoms, the diffraction limit
of the optical system, and the photon recoil in the measurement process itself. The tan-
talising possibility exists of measuring the shot noise on a Bose-Einstein condensate, and
thereby gaining information on its quantum statistics. A scheme to produce and measure
squeezing (a reduction in variance beyond the shot noise limit) in an atom laser beam will
require a detector capable of measuring at the atomic shot noise limit, like the one devel-
oped in this thesis. At the moment, applying this technique to measuring the shot noise on
a BEC is limited by the size of the condensate and the resolution of the imaging system,
but in principle it should be possible, as this thesis demonstrates. A full calibration of the
experimental setup is performed.The application of this work to increasing the precision
of cold atom interferometry is discussed.
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Chapter 1

Introduction

Physics is built on the interplay between theory and measurement. This is particularly
true in the last decade and a half of progress in Bose-Einstein condensation, from the initial
discovery of Bose-Einstein condensates (BEC) in dilute alkali gases [2] and the investiga-
tions into their basic properties [3, 4, 5], through to quantum correlation measurements
[6, 7, 8, 9] and tests of the Bose-Hubbard model [10, 11] which describes bosons in an
optical lattice.

But measurement itself is imprecise. Every measurement that is made has uncertainty,
some of which stems from how much noise is present in the data. The impact of noise on
a measurement can be quantified by its signal to noise ratio,

Signal

Noise
(1.1)

and this can be improved in two simple ways: by increasing the signal or reducing the
noise. Understanding noise and subsequent reduction of noise is where this thesis will
focus. Some noise sources can be eliminated1. But some noise sources are inherent in
the process and while they can be minimized, they cannot be completely removed. As an
example consider a coherent laser beam. Quantum mechanics dictates that when counting
the photons arriving from such a beam, there will always be fluctuations in the number
that arrive in a certain time interval. These fluctuations, generally called photon shot
noise, represent a fundamental limit to how well the intensity you measure will correspond
to the time-averaged intensity of the beam. It is often possible to reduce the relative noise
this imparts to a dataset by increasing the intensity of the laser beam2, thereby improving
the ratio (1.1), but it is not possible to completely remove such a noise source3.

The measurement tool analysed in this thesis is absorption imaging. It is the most
common and one of the simplest imaging techniques for ultra-cold atom clouds. An image
of the atoms is acquired by looking at the shadow cast upon a laser beam by a cloud of
atoms. This is compared to an image with no atoms and the atomic density distribution
is found. The question being asked in this thesis is: can we push the signal-to-noise ratio
of the absorption image to the fundamental limits imposed by quantum mechanics? And
if this is possible, can we detect a signal-to-noise ratio beyond the quantum limit4?

1For example in this thesis, such noise sources are dust, unnecessary optical elements, and electronic
noise from the equipment.

2However, any classical noise on your data will be amplified by this technique, and the best signal-to-
noise ratio will be achieved at a compromise between these two effects.

3If the light can be persuaded to no longer be coherent, it is possible to reduce the fluctuations in photon
counting. This is known as squeezing. However, this method introduces fluctuations in other variables
which may be of interest.

4For example, can we detect a lower than classically expected fluctuation in the density of atoms in a

3
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Figure 1.1: Left: Diagram illustrating absorption imaging, the measurement technique which
this thesis will focus upon. Right: Schematic of a Sagnac interferometer, which can be used to
measure rotation.

The quantum limit, otherwise referred to as shot noise, has been measured for decades
and not always as an inconvenience. Another example where shot noise arises is in the
precise measurement of current. Here, inherent fluctuations around the mean are also re-
ferred to as shot noise, and arise due to counting electrons instead of photons. In fact,
the fractional quantum Hall effect, observed in the conduction properties of a 2D electron
gas with a perpendicular magnetic field, can be directly observed by looking at the noise
on current due to counting fractional charge quasi-particles, for examples see [12, 13]. Re-
cently, the same experiment has been proposed in cold atom clouds trapped in an optical
lattice [14]. Theoretically, fluctuations in atomic density on cold atom clouds have been
investigated by many authors. The main difficulty is the absence of simple analytic solu-
tions in the microcanonical ensemble5. Numerical solutions which apply to finite numbers
of isolated atoms are of course possible (such as [15, 16, 17, 18, 6]). Experimentally, the
absorption imaging technique has been used to measure quantum noise on a cold atom
cloud in several notable instances. Fölling et. al. [7] used the technique to find the spa-
tial noise correlation function of a cloud of 87Rb atoms dropped from an optical lattice,
thus revealing the periodicity of the lattice structure. Greiner et. al. [8] used the atom
shot noise in absorption images to measure pair correlations (in space and momentum) in
their cold fermionic cloud of 40K atoms6. It should be noted, however, that they used a
large amount of digital image processing (low and high pass filters) to reduce the classical
fringes and camera noise on their image, in contrast to this thesis, where no image filtering
is used to achieve atomic shot noise visibility. Esteve et. al. [19] measured the atomic
density fluctuations in a quasi-1D 87Rb Bose gas, again using absorption imaging. They

Bose-Einstein condensate?
5The microcanonical ensemble is a statistical mechanics concept which describes an isolated system

which does not exchange particles or energy with a reservoir. This is the correct description of a cold
atom cloud in a magnetic trap on short time scales, so that heating from current fluctuations in the trap
and particle loss are not part of the description. This is in contrast to the canonical or grand-canonical
ensembles which describe a system which is in equilibrium with a reservoir, due to exchanging either energy,
or particles and energy, respectively. Most of the easy analytic solutions (especially the semiclassical ones
presented in section 4.3) implicitly assume the grand-canonical ensemble, so it is a wonder they work at
all, close to the condensation temperature Tc

6They used a Feshbach resonance (a change in scattering length dependent upon the applied magnetic
field) to create weakly attractive interactions to form molecules. These molecules were then dissociated by
applying a radio-frequency field. The dissociated atoms are correlated because each pair moves apart in
opposite directions with roughly equal speeds.
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found qualitative agreement with the models of a 1D Bose gas (which has accurate analytic
solutions), and the poissonian thermal statistics in the appropriate temperature regimes.
However, their data is plagued by the same blurring as ours, with even more photon shot
noise and consequently, their ‘agreement’ with theory is within a factor of 5. Their results
do not directly apply to 3D BEC, since in a very elongated trap, the atoms at either end
are not in contact (their separation is much larger than their de Broglie wavelength) and
so they do not exhibit long-range coherence. Other methods of measuring atomic shot
noise (and thus probing the quantum statistics of the atom cloud) have been used, such
as in Chuu et. al.’s measurement of small BECs (< 103 atoms) of 87Rb using fluorescence
imaging [20]. They measured sub-poissonian (variance less than the number) atomic shot
noise on Bose-condensed clouds with up to 500 atoms. This technique provides the re-
quired accuracy for small clouds, but absorption imaging provides a better signal-to-noise
for clouds with roughly 103 atoms or more [20]. This thesis aims to see atomic shot noise
without digital filtering such as used in [8], and with quantitative agreement as opposed to
[19]. One long-term aim is to measure the quantum statistics of indistinguishable bosons
using atomic shot noise. The other is being able to measure sub-poissonian atomic shot
noise (squeezing) on larger clouds than [20], as squeezing techniques can be used to increase
the sensitivity of cold-atom interferometry.

Squeezing is a general term for techniques that allow measurement with precision be-
yond the standard quantum limit [21]. That is, BECs could have atom density with
variance less than poissonian [22]. Generally a squeezed state will allow more precise
measurement of one variable, at the expense of the conjugate variable. For example, in-
tensity or amplitude squeezing will allow more precise measurement of the atom number
at one output port of an interferometer, at the expense of a greater uncertainty in the
phase difference between the ports. Squeezing requires a nonlinear interaction term in the
Hamiltonian, which can be from a nonlinear crystal (in the case of a laser) or from a two
body interaction term in a BEC [22]. A BEC can also be squeezed by interaction with
squeezed laser light [23].

In terms of the relative uncertainty in atom number 1√
Natoms

, squeezing can be consid-

ered to change this factor to ξN√
Natoms

where ξN < 1 is the number squeezing parameter.
Estève et. al. [24] observed number squeezing in BECs using a one dimensional optical
lattice in a magnetic trap, where the squeezing is obtained from the nonlinear inter-particle
interactions. They achieved a best number squeezing7 of ξ2

N = −6.6dB in a six-well lattice
corresponding to ξN = 0.5.

Atomic interferometry has the advantage over light interferometry that atoms interact
strongly with all of the fundamental forces, whereas light does so only weakly. This makes
atoms a more attractive probe for measurement. Another advantage atoms have over
light is inertial mass, the benefit of which is best illustrated by a small calculation. In
interferometry, a measurement is made by comparing a reference signal (for example sinωt)
to a measurement signal (let’s say sin(ωt + φ)). The phase difference φ can be related to
the measurement quantity of interest. Interferometry can be used to measure rotation with

7However, as number squeezing is a trade off against phase coherence, a better measure of squeezing
called the coherent squeezing parameter ξS = ξN

〈cosφ〉 is used, where 〈cosφ〉 is a measure of phase coherence
between the wells. The best coherent squeezing Estève et. al. achieved was ξ2S = −3.8dB , also in a
six-well lattice, corresponding to ξN = 0.6 and 〈cosφ〉 = 0.78.
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the setup depicted in Figure 1.1. Here the phase difference is given by the formula [1]

φ = 8πcAΩE

where A is the area enclosed by the interferometer, Ω is the rotational velocity of the setup,
E is energy of the particle used for measurement and c is the speed of light. In the case of
atoms, E is the rest energy Eatom = mc2 and in the case of photons, it is the energy per
photon Elight = hc/λ. The precision achievable with the two techniques can be compared
by taking the ratio of the phase differences, the larger the phase difference, the easier or
more precise the measurement:

φatom

φlight
=

Eatom

Elight

=
matomcλlight

h

≈ 10−25 ×
(
3× 108

)
× 10−7

7× 10−34

≈ 1010. (1.2)

Theoretically, ten orders of magnitude more precision appears to be achievable with atomic
interferometers8! But there is yet another possibility. Just as temporally coherent light
from laser beams improved the precision available from light interferometry, so too may
coherent atom sources improve the precision of atom interferometry, by the ability to
squeeze the atom source. Hot and cold atom interferometers are already in use [1, 25, 26, 27]
for a multitude of precise measurements. The fine structure constant α, which sets the
strength of electromagnetic interactions, has been measured using atom interferometry
to a relative accuracy of 7 × 10−9 [28, 29], which is roughly half as accurate as the best
measurement of α using the quantum Hall effect. There are plans underway to gain an order
of magnitude in precision [30] using atomic interferometry. Cold atom interferometers are
also used to measure the local gravitational field very precisely [31] which has applications
in navigation and mineral exploration, and has been proposed for tests of general relativity
[32] in which the interferometer would be a gravitational wave detector with comparable
sensitivity to the best light-based interferometers.

Whether or not the precision of cold atom interferometers will eventually live up to
the bold promise of (1.2) is a difficult question to answer theoretically. To answer the
question by experiment, our detection tool - absorption imaging - must be able to image
at the atomic shot-noise limit. Only then we can detect if we are able to squeeze the atom
interferometer, and thereby increase our measurement precision. So this is the quest we
embark upon; analytically and quantitatively reducing the noise on absorption images of
cold-atom clouds, searching for the quantum limit of atomic shot-noise.

8At present their advantages are not fully realised though, because a laser can produce many more
photons per second than an atom laser can produce atoms per second. This, however, is merely an
engineering challenge.



Chapter 2

Apparatus

In this chapter, we briefly describe the apparatus used to prepare samples of ultra-cold
87Rb to study atomic shot noise.

2.1 Properties of 87Rb

There are two naturally occurring isotopes of rubidium, 85Rb (72%) and 87Rb (28%). They
have several electronic transitions at 780nm, well within the capabilities of cheap and read-
ily available diode lasers1. An important step in the standard technique for achieving BEC
in dilute alkali gases is the evaporative cooling stage, in which the most energetic atoms are
allowed to leave the system, and the remainder rethermalise at a lower temperature. This
rethermalisation relies heavily upon the collisional scattering cross-section of the species of
interest. The collisional properties of 87Rb make it particularly well-suited to evaporation
[34, 35], making the condensation of 87Rb relatively straightforward. Some of the relevant
physical properties of 87Rb are listed in the table below.

Property Value Source
Mass 86.91 g/mol = 1.4432× 10−25 kg [36]

Natural Abundance 27.83(2) % [36]
Atomic Number 37 [37]

Ground State Electronic Configuration [Kr] 5s1 [36]
Particle Type Composite Boson [37]
Nuclear Spin I 3/2 [38]

S-wave Scattering Length a 5.77 nm [39]
Thermal de Broglie Wavelength λT λ2

TT = 35.07 µm2nK λT = h√
2πmkBT

52S1/2 → 52P3/2 Optical Transition
Wavelength λ 780.24 nm (Vacuum) [38]

Natural Linewidth Γ 2π × 6.066 MHz [38]
|F = 2,mF = ±2〉 → |F ′ = 3,m′F = ±3〉 σ± closed cycling transition

Resonant cross-sectional area σ0 2.906× 10−9 cm2 [38]
Saturation intensity Isat 1.669 mW/cm2 [38]

Table 2.1: Some properties of 87Rb.

1A 10mW laser diode will set you back around $25 [33].

7
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Figure 2.1: Above: Hyperfine level splitting of 87Rb. Below, Top: Diagram of the key parts
of the 87Rb BEC machine. The arrow next to the 3D MOT shows the direction in which its
quadrupole coils move (on a robotic stage, not shown) to transfer the atoms into the Ioffe coils
for evaporative cooling. Below, Bottom: The 3 pairs of orthogonal laser beams which, together
with the two coils, make up the 3D Magneto-Optical Trap.
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2.2 87Rb BEC Machine

To make a 87Rb BEC, our setup requires several stages of collection and cooling. It all
begins in the 2D Magneto-optical trap (MOT). In the 2D MOT glass cell, the rubidium
vapor is kept at the saturation pressure, which is roughly 10−7 Torr for the laboratory
temperature of 16oC. Elongated quadrupole magnetic fields are applied as per Figure 2.1,
to confine the atoms to a narrow line down the centre of the first glass cell. A laser ‘push
beam’ (locked on the |F = 2,mF 〉 to F ′ = |3,mF ′〉 transition2) directs the atoms though
a tiny opening into a different vacuum chamber (at about 10−11 Torr ambient pressure) in
which the atoms are collected and cooled in a 3D MOT.

The 3D Magneto-optical trap consists of a quadrupole magnetic field with six circularly
polarised laser beams in three orthogonal directions which are slightly detuned below the
resonant frequency. It works by confining the atoms in both position (via the Zeeman shift
in the optical resonance as the atoms move off-centre in the magnetic field) and velocity
space (via the Doppler shift in the optical resonance as the velocity increases toward the
source of the beam). The force experienced by the atoms can be approximately expressed
as [37]

F3DMOT ≈ −2
∂F

∂ω
(kv + βr)

where the velocity of the atom is v, the atom’s displacement from the centre of the trap r,
the wave number and frequency of the laser light are k and ω, β is the Zeeman shift given
component-wise by

βri =
gJµB

~
∂B

∂xi
ri

and

∂F

∂ω
=

~ΓI
2cIsat

∂

∂ω

ω

1 + I
Isat

+
(

2[ω−ω0]
Γ

)2 ,

and the resonant frequency of the atomic transition is given by ω0.
We have about 1010 atoms at this point, as measured by fluorescence in the MOT.

Polarisation gradient cooling3 is applied for a few milliseconds, followed by optical pumping
into the |1,−1〉 ground state. Approximately 50% of the atoms make it into the |1,−1〉
state as the optical pumping is turned off, as some end up in the untrapped |1, 0〉 state
and some land in the |1, 1〉 state which is repelled from the centre of the trap. A robotic
stage then transfers the atoms in the 3D MOT quadrupole coils to the Ioffe-Pritchard
magnetic trap. The transfer between the magnetic traps is affected by how well they are
‘mode-matched’, which includes the geometry of the potential seen by the atoms, and the
speed with which the transfer takes place. Now there are around 108 atoms in the Ioffe
trap. Here, we begin radio frequency (RF) evaporative cooling from around 60MHz to
a final frequency of between 5 and 1MHz depending upon the size of the cloud and the

2Throughout this section, the notation |F,mF 〉 is used to represent the internal state of the atoms. F
is the total angular momentum, and mF is the component of the angular momentum in the direction B̂
where

−→
B is the magnetic field at the location of the atoms.

3Polarisation gradient cooling allows laser cooling to achieve dramatically sub-Doppler temperatures by
showing the atoms a gradient in the potential energy due to a periodically changing light polarisation in a
standing wave. The atoms are more likely to emit a photon at the top of the gradient, and this puts them
at the bottom again. In this way they are always travelling ‘uphill’ so they lose energy. See, for example,
[37].
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temperature required4. During this stage it is important to confine the atoms enough to
allow two-body collisions and rethermalization, to make the evaporative cooling efficient.
At the completion of a suitably low RF evaporation sequence (down to about 1MHz) we
have an atom cloud with a sizable BEC.

Having produced a BEC, there are various options for what we may do with the cloud.
The stock-standard ‘ballistic expansion’ is simply to turn off the confining magnetic field
and allow the atoms to fall under gravity, expanding as they fall due to their momentum
width.

Another option is to use an RF pulse to transfer a fraction of the |1,−1〉 atoms into
the |1, 0〉 state so that they are no longer held by the confining magnetic field and will thus
fall under gravity while the majority of the atoms are still trapped. This is known as radio
frequency outcoupling, as the radio frequency field couples the trapped |1,−1〉 state and
the untrapped |1, 0〉 state. Leaving the pulse on for a slightly longer duration can create
a continuous5 outcoupling (see Figure 3.4), while increasing the amplitude of the coupling
and the duration can allow for coupling to the ‘anti-trapped’ |1, 1〉 state in which the atoms
are repelled from the centre of the magnetic trap, as well as being pulled down by gravity.

After we have an out-coupled pulse, we can do interesting things with it. For example,
to create an interferometer we split the out-coupled pulse into separate mF states soon
after it is generated, then recombine the pulses later and count how many atoms are in
each final mF state (see Chapter 6).

Imaging takes place after the atoms are repumped from the |1,−1〉 state into the |2, 2〉
state. The |2, 2〉 → |3, 3〉 transition is used as it is a closed transition, because the excited
state |3, 3〉 can only decay into the |2, 2〉 state. Thus, each atom can be treated simply as
a two level system. Imaging will be treated in detail in Chapter 3.

4The radio-frequency field is applied by a small one-loop coil next to the glass cell in which the atoms
are. For an overview of evaporative cooling in BECs, see [35].

5Continuous for a small amount of time, eventually the BEC will run out of atoms.



Chapter 3

The Theory Of Absorption Imaging

Having produced the cold atom sample, we now proceed to analyse the measurement of
the atom cloud. This chapter presents a rigorous theoretical description of the technique
of absorption imaging. We first discuss alternative imaging techniques, and the reason for
the choice of absorption imaging.

3.1 Imaging techniques

Absorption imaging involves a minimum of two images. The first, If (x, y), is a picture of
the intensity profile of the imaging laser beam, with the shadow of the atoms cast upon it.
The second picture, I0(x, y), is taken after the atoms have fallen out of the camera’s view,
so that the profile of the imaging laser beam can be recorded by itself. It achieves high
signal to noise in large atom clouds, but it saturates at high density1, and its measurement
precision is affected by lensing2 for small detunings from the atomic resonance and high
densities. Absorption imaging has the disadvantage of a high heating rate due to photon
recoil (see section 3.5.3), making it a destructive imaging technique.

Dispersive imaging methods require the use of scattered light. These include dark-
ground imaging, and phase contrast imaging. In dark-ground imaging, a screen in the
Fourier plane blocks the unscattered light, so the signal comes from the scattered light
alone. For low atom densities this technique has a signal which is quadratic in atomic
density, making it insensitive to small atom clouds[40]. Phase contrast imaging uses the
unscattered light as the local oscillator for a sort of homodyne detection [40]. The scattered
light is phase shifted by π/2 in the Fourier plane, so that it interferes with the scattered
light. Phase contrast imaging has the advantage that at low atom densities its signal is
linear in density, however, it is still a factor of 2 behind absorption imaging [40]. Dispersive
imaging techniques have two advantages. The first is that the measurement signal is cyclic
(as a phase is measured) so that they do not saturate at high atom number. The second
advantage is that for the same amount of heating (due to photon recoil), dispersive imaging
techniques obtain more signal than absorption imaging. They can be made relatively non-
destructive, and this allows repeated measurements on a single atom cloud.

Fluorescence imaging provides a lower signal than the other techniques, but it has the
advantage of lower background noise [40]. Its signal-to-noise makes it the optimum tech-
nique for detecting atom clouds with less than 103 atoms [20]. However with larger atom
clouds, its signal becomes typically 100 times lower than that from absorption imaging.

1This can be alleviated by detuning from the atomic resonance.
2The index of refraction of the cloud is proportional to atomic density. For our analysis of imaging, we

assume that this lensing effect is minimal.

11
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As our atom clouds are typically on the order of 105 to 106 atoms, are not prohibitively
dense after ballistic expansion, and as we do not require multiple measurements of the
same cloud, absorption imaging has been chosen as our measurement technique.

3.2 Measuring Atomic Density

3.2.1 Simple model

We begin the analysis of absorption imaging by assuming the atoms are acting as inde-
pendent two-level systems. Let the atoms have a volume density ρ(x, y, z). Those atoms
in the path of the laser reduce the light’s intensity I according to Beer’s law;

dI

dz
= −ρσI (3.1)

where σ is the optical cross section of the atoms[37],

σ =
σ0(

2∆
Γ

)2 + 1
(3.2)

which is a function of the detuning from atomic resonance ∆ = ω − ω0, the linewidth of
the transition Γ and the resonant cross-sectional area σ0 = 3λ2

0
2π . So from (3.1)

ˆ If

I0

1
I
dI =

ˆ ∞
−∞
−ρσdz

If = I0e
−nσ (3.3)

where n(x, y) =
´∞
−∞ ρ(x, y, z)dz is now the column density of atoms per unit area in the

xy plane. Thus if we can measure I0 and If , we can calculate n(x, y) as follows

n(x, y) =
1
σ

ln
(
I0(x, y)
If (x, y)

)
. (3.4)

In the actual experiment we will not be measuring continuous functions, but rather pixe-
lated samples of those continuous functions. This will introduce some approximation into
our measurement as

ln
(

1
A

ˆ
A
I(x, y) dxdy

)
︸ ︷︷ ︸

what we will calculate

6= 1
A

ˆ
A

ln I(x, y) dxdy︸ ︷︷ ︸
the correct expression

(3.5)

where A is the area occupied by one pixel. The approximation will improve with smaller
pixels or flatter intensity distributions, until the area of the pixel is small enough that the
intensity is constant over an entire pixel, at which point the approximation becomes exact.

3.2.2 Complete model

Next, we maintain the assumption that our atoms act as independent two-level systems,
but we include two extra facts:

1. The atoms can be saturated, so that at high intensity the relationship dI
dz ∝ I no

longer holds. In fact the correct way to include this in the semi-classical model is to



§3.2 Measuring Atomic Density 13

adjust σ so that
σc =

σ0(
2∆
Γ

)2 + 1 + I
Isat

(3.6)

where Isat = πhcΓ
3λ3

0
is the on-resonance saturation intensity.

2. Not all the light can be absorbed by the correct transition3, so as a general correction
we may say that a fraction α is absorbable, i.e.

dIa
dz

= −ρσcIa (3.7)

where Ia0 = αI0.

Given the corrections (3.6) and (3.7), we see that

dIa
dz

=
−ρσ0Ia(

2∆
Γ

)2 + 1 + Ia
Isat

so that

ˆ Iaf

Ia0

((
2∆
Γ

)2 + 1
Ia

+
1
Isat

)
dIa = −

ˆ ∞
−∞

ρ(x, y, z)σ0dz[(
2∆
Γ

)2

+ 1

]
ln
Iaf
Ia0

+
Iaf − Ia0

Isat
= −n(x, y)σ0

and relabeling L =
(

2∆
Γ

)2 + 1, we have

n(x, y) =
1
σ0

[
Ia0f − Iaf

Isat
+ L ln

Ia0

Iaf

]
, (3.8)

which would appear to be the end of the problem.
However, what we will measure on the camera is I0 = Ia0/α and If = Iaf + (1− α) I0,

as the camera cannot distinguish between light which the atoms can and cannot absorb.
Thus we have

n(x, y) =
1
σ0

[
αI0 − If + (1− α) I0

Isat
+ L ln

(
αI0

If + (α− 1) I0

)]
n(x, y) =

1
σ0

[
I0 − If
Isat

+ L ln
(

αI0

If + (α− 1) I0

)]
. (3.9)

This is the equation which will be applied to calculate the atom column density n(x, y)
on a pixel by pixel basis. Note that this expression is also subject to the problem described
in inequality (3.5), and that in the case where α = 1 and Isat →∞ equation (3.9) reduces
to equation (3.4).

Figure 3.1 demonstrates the impact that not including these corrections will have on
imaging. Optical depth here refers to the quantity ln I0

If
.

3Due to imperfect polarization, etc.
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How the Measured OD Hno correctionsL varies with the intensity correction

0

1

2

3

ODreal

1

2

3

I0�Isat

0

1

2

ODmeasured

Figure 3.1: How the measured OD (= ln I0
If
) varies, with and without the intensity correction

term in equation (3.9). The effect is shown in this graph, for on-resonance light (∆ = 0, L = 1).
The measured OD will be much lower than the real OD at high intensities or a high detuning, in
these instances a lower atom density will be measured as well. It is not always feasible or desirable
to operate in a low-intensity regime, so the intensity correction term is required.

3.3 Noise on Absorption Imaging

3.3.1 Atomic Noise

3.3.1.1 Ideal Boltzmann gas

In an ideal Boltzmann gas it is possible to derive the fluctuation around the mean number
of particles 〈n〉 = ρv in a given volume v, where the total number of particles in the gas is
N = ρV and the total volume of the gas is V . This can be done [41] by considering the
probability that in a gas consisting of one particle, the particle is instantaneously in the
volume v ≤ V . Assuming ergodicity, this is given by the ratio v/V . The probability that
there are n particles in this volume, given that the gas contains a total of N particles is
given by the binomial distribution;

P (n particles in a volume v) =
(
N

n

)[ v
V

]n [
1− v

V

]n−N
. (3.10)

Since this probability is binomial, if we take the thermodynamic limit that N → ∞ and
the limit that v � V so that v/V → 0, noting of course that

N
v

V
= ρv

= 〈n〉
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which may be held constant throughout the limit, we arrive at a Poisson distribution (see
section A.1)

P (n� N particles in a volume v � V ) =
〈n〉n e〈n〉

n!
(3.11)

which gives the variance of the particle number about its mean value as

Var(n) = 〈n〉 .

So, in an ideal Boltzmann gas, the variance in the number of particles in a given small
volume is equal to the mean number in that volume.

3.3.1.2 Quantum Bose Gas

The equations (3.10) and (3.11) also hold for non-interacting bosons in a box4 [42]. In gen-
eral the variation in number density is given in this case from the second order correlation
function which is defined by [43]

g2(r1, r2) =

〈
ψ̂†(r1)ψ̂†(r2)ψ̂(r1)ψ̂(r2)

〉
〈
ψ̂†(r1)ψ̂(r1)

〉〈
ψ̂†(r2)ψ̂(r2)

〉
=

〈
ψ̂†(r1)ψ̂†(r2)ψ̂(r1)ψ̂(r2)

〉
〈ρ̂(r1)〉 〈ρ̂(r2)〉 .

where ψ̂(r, t) is the bosonic annihilation operator at the position r, and can be written in
terms of the energy eigenstate annihilation operators âi

ψ̂(r, t) = δ(r− r′, t− t′)
∑
i

ciâi.

If we now define for small r

g2(r) = g2(R,R− r)

and then take r→ 0 we see that

g2(0) =

〈
ψ̂†(R)ψ̂†(R)ψ̂(R)ψ̂(R)

〉
〈ρ̂(R)〉2

=

〈
ρ̂(R)2

〉
〈ρ̂(R)〉2

,

and the variance in number density (at a point) is given by

Var(ρ) =
〈
ρ̂(R)2

〉
− 〈ρ̂(R)〉2

= [g2(0)− 1] 〈ρ̂〉2 . (3.12)

4Although, in [42] the distributions are derived in the form of cumulant generating functions rather
than probability distribution. However, the two forms are equivalent.
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The generalization to a larger volume is given by [41]

Var(n) =
[ˆ

g2(r)dV − 1
]
〈n〉2 (3.13)

where n =
´
ρdV is the number of particles in the volume. According to [40], g2(0) = 2

for a thermal cloud and g2(0) = 1 for a BEC.

3.4 Laser Light Noise

3.4.1 Photon and electron statistics

An important point to note is that, in a given image, the statistics of the count at a pixel
arises directly from the electron statistics and only indirectly from the statistics of the
laser light. If we have a Poisson-distributed random number of photons N arriving at a
detector in a time t, then the probability that exactly n photons hit the detector in time
t is given by

Pr(N = n) =
(kt)n e−kt

n!
(3.14)

where k is the constant average rate at which photons hit the detector over a long time
period,

k ≡
〈
dn

dt

〉
=

IApixel

Ephoton

and is equal to the intensity of the light I times the area of the detector (pixel) Apixel

divided by the energy of one photon Ephoton. Now assume that the detector detects some
of the photons that hit it, some not. Say the probability of a detection, given that there is
a hit, is p. Thus, given there were n total hits, the probability that the number detected
M , equals some number m, is binomial;

Pr(M = m|N = n) =
(
n

m

)
pm (1− p)n−m .

We can combine these two to find the probability of m photons being detected at the
detector in a time t. Since

Pr(M = m) =
∑

all possible n

Pr(M = m|N = n)Pr(N = n)
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by conditional probability, we have

Pr(M = m) =
∞∑
i=0

Pr(M = m|N = m+ i)Pr(N = m+ i)

=
∞∑
i=0

(
m+ i

m

)
pm (1− p)i (kt)m+i e−kt

(m+ i)!

=
∞∑
i=0

(m+ i)!
m!i!

pm (1− p)i (kt)m+i e−kt

(m+ i)!

=

( ∞∑
i=0

[kt (1− p)]i e−kt(1−p)
i!

)
(pkt)m e−ktp

m!
.

Now the term in brackets is the sum over all probability of a Poisson distribution with
mean kt (1− p), so it is exactly 1. Thus

Pr(M = m) =
(pkt)m e−ktp

m!

which is a Poisson distribution with mean and variance pkt.
So a CCD pixel with a quantum efficiency p and covering an area A, taking a picture

of a light source with poissonian statistics 3.14, intensity I and energy per photon of E,
and using an exposure time of t, has a probability of acquiring m electrons in its well of

Pr(M = m) =
(pkt)m e−ktp

m!

=

(
pIAt
E

)m
e−

pIAt
E

m!
(3.15)

which is Poissonian with mean and variance

〈m〉 =
pIAt

E
. (3.16)

Now when the camera takes an image, the number of electrons m in each well are
counted. The number of electrons is then effectively multiplied5 by a number s called the
System Gain, to arrive at the number of counts φ for that pixel;

φ = sm (3.17)

and thus to calculate the ‘intensity’ Im on a pixel we use

m =
φ

s

pInAt/E =
φ

s

In =
φE

spAt

5During the analog to digital conversion (ADC). Note that s also includes any post-ADC multiplication
factor, such as a software multiplication.
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But to calculate the variance we will measure in the intensity, Var(In), we use (from
equations (3.14),(3.15))

Var(m) = pVar(n)

〈m〉 = pVar(
InAt

E
)

p〈I〉At/E =
pA2t2

E2
Var(In)

Var(In) =
E

At
〈In〉 .

In the subsequent sections it is easier to work with electron count m instead of intensity
I. The conversion is supplied by equation (3.16), which can also be used to convert Isat in
equation (3.9) into msat = pIsatAt/E. Thus the expression (3.9) for the column density of
atoms per unit area becomes

n(x, y) =
1
σ0

[
m0 −mf

msat
+ L ln

(
αm0

mf + (α− 1)m0

)]
. (3.18)

This is the actual equation implemented to calculate the atom density from the images.

3.4.2 Simple model

As described in the previous section, the electron count m0 with no atoms will have pois-
sonian statistics6, i.e.

E(m0) = Var(m0) = m̂0.

The light which has passed through the atoms is still coherent7, but with lower intensity.
It will thus also have poissonian statistics

E(If ) = Var(If ) = Îf = Î0e
−n̂σ.

from equation (3.3). Thus the electron count will also be exponentially reduced, but still
poissonian (following the discussion in the previous section):

E(mf ) = Var(mf ) = m̂f .

= m̂0e
−n̂σ.

6Commonly referred to as photon shot noise.
7CCD cameras are phase insensitive, so we need not worry here about the phase difference [40] the light

acquires when travelling through the atom cloud.
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Now we are interested in the variance which this introduces into our calculation of n(x, y)
from equation (3.4),

n(x, y) =
1
σ

ln
(
I0(x, y)
If (x, y)

)
=

1
σ

ln
(
m0(x, y)
mf (x, y)

)
=

1
σ

(lnm0 − lnmf )

Note that σ here refers to the optical cross-section of the imaging transition, not a stan-
dard deviation. This variance may be calculated by propagation of errors, or by applying
the approximate mean and variance formulas discussed in section A.2. Here we will use
propagation of errors, so we have

(dn)2
photon =

1
σ2

[(
dm0 ·

∂

∂m̂0
ln m̂0

)2

+
(
dmf ·

∂

∂m̂f
ln m̂f

)2
]

=
1
σ2

[(
dm̂0

m̂0

)2

+
(
dm̂f

m̂f

)2
]

=
1
σ2

[
1
m̂0

+
1
m̂f

]
Var(n)photon ≈ 1

m̂0σ2

[
1 + e−n̂σ

]
(3.19)

where the subscript ‘photon’ refers to the fact that this is the contribution to the noise on
the image due purely to variation in photon number, i.e. not including variation in the
atom number density itself. This equation is not used to calculated the theoretical photon
shot noise, however it is instructive as the real equation (3.20) derived in the next section
involves a function which is not expressible in simple algebraic form.

3.4.3 Complete model

If we include the corrections of section 3.2.2 we find that we still have

E(m0) = Var(m0) = m̂0.

and
E(mf ) = Var(mf ) = m̂f .

but this time, m̂f is related to m̂0 by the inverse function of equation (3.18);

n(x, y) =
1
σ0

[
m0 −mf

msat
+ L ln

(
αm0

mf + (α− 1)m0

)]
= f(m0,mf , L)

so that
m̂f = f−1(n̂, m̂0, L) ,

but in general f−1 is not expressible in simple algebraic form. Nonetheless, we may continue
keeping in mind that we may need some computational tricks to calculate Îf . Again using
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propagation of errors, we see that

(dn)2
photon =

[(
dm0 ·

∂

∂m̂0
n̂

)2

+
(
dmf ·

∂

∂m̂f
n̂

)2
]

=
1
σ2

0

[
m̂0

(
1

msat
+

L

m̂f + (α− 1) m̂0

)2

+ m̂f

(
1

msat
+

Lm̂f

(m̂f + (α− 1) m̂0) m̂0

)2
]

Var(n)photon ≈ 1
σ2

0

[
m̂0

(
1

msat
+

L

m̂af

)2

+ m̂f

(
1

msat
+

Lm̂f

m̂afm̂0

)2
]

(3.20)

where on the last line I have defined the shorthand8 m̂af = m̂f +(α− 1) m̂0. By taking the
limit msat →∞ and inserting α = 1 so that once again m̂f = m̂0e

−n̂σ, we find that after
some algebra9 we recover equation (3.19). The equation (3.20) is used to calculated the
theoretical photon shot noise in the experiment, and can be seen in action in the results
of Chapter 5.

3.4.4 Effect of classical fringes

Suppose the effect of a particular fringe (which could be caused by a speck of dust, a
scratch, or the edge of a mirror, etc.) is to relocate some light10 δI from outside where the
atoms are (in the picture we take with the camera), to on top of where they are.

I → I + δI (3.21)

Assume also that any classical fringes are small compared to the total amplitude of the
light, i.e.

δI � I.

It is clear that any fringes that occur before the atoms (before point A in Figure 4.1) will
not affect the calculated atom distribution, as they will be properly accounted for by the
treatment of equation (3.18). However, any fringes that occur after the light has passed
through the atoms (after point B in Figure4.1) will effect a change in the calculated atom
distribution. Let us calculate that change in the simple imaging model of section 3.2.1.
Equation (3.4) gives us

ncalc =
1
σ

ln
(
I0 + δI

If + δI

)

8This is the same as in section 3.2.2, but is a shorthand here simply because Iaf must be calculated
from If and I0.

9Mainly consisting of setting σ = σ0/L.
10For example, locally the fringe could be described by δI ≈ δ × cos2 (kxx+ kyy) where r = [x, y] are

the coordinates perpendicular to the propagation direction of the light, and k is a wave vector representing
the fringe. The cos2 is chosen so that the light intensity is only increased by the fringe. This is only an
instructive model, and not a proper treatment of the effects of classical fringes.
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and we know that before the fringes occurred If = I0e
−nσ so

ncalc =
1
σ

ln
(

I0 + δI

I0e−nσ + δI

)
=

1
σ

[
ln (I0 + δI)− ln

(
I0e
−nσ + δI

)]
≈ 1

σ

[
ln (I0) +

δI

I0
− ln

(
I0e
−nσ)− δI

I0e−nσ

]
= n− δI

σI0
(enσ − 1)

and we will calculate fewer atoms than we should. Note that the fringing on our atom
distribution will be proportional to the original fringes, and it will increase with optical
depth enσ and detuning ∆ (which will come through in σ). In the full model of section
3.2.2 we will arrive at the same conclusion, as the δI’s in the intensity correction term
will cancel. A proper treatment of diffraction fringes would also allow for the possibility
of fringes which remove light from the area where the atoms are, and this would cause us
to calculate more atoms than we should.

Therefore, as one would expect, we can achieve better data by removing fringes from
our imaging system (by cleaning, realigning etc.) before taking measurements.

3.5 Sources of blurring

We could now construct a model of what we expect to see if we were to image a cloud of
fixed, stationary atoms. Unfortunately nature is rarely so kind: the main issue we have
remaining to deal with is blurring of the image. The pixels on each image can be thought
of as independent atom detectors, each one measuring a number of atoms Ni. If there
is a mechanism which causes the atomic image to be spread over a fraction ε < 1 of a
pixel length in a given orientation, then neighbouring pixels in that direction are no longer
independent samples of the atom distribution. A simple model of blurring says they are
now correlated by

Ni →
1

1 + ε
Ni +

1
2

ε

1 + ε
(Ni−1 +Ni+1) . (3.22)

This can be seen by considering how a blurred atom occupying a length ε, and at least
partially occupying a given pixel Ni contributes to its neighbouring pixels. By symmetry,
the contribution from neighbouring pixels to a given pixel (3.22) will be the same. Consider
a length ε anywhere in between positions a and b in Figure 3.2. It is clear that summing
over all possible positions in this region will lead to a contribution proportional to ε/2

ending up in each of Ni−1 and Ni (as the total distance traversed by the left edge of the
blur is ε). From position b to c, the whole contribution (proportional to 1 − ε) will go to
Ni, and from position c to d we have the same situation as we had initially, only this time
a contribution of ε/2 goes to both Ni and Ni+1. Adding all the contributions to each pixel,
and normalising all of them by the total distance 1 + ε traversed by an edge of the blur
from positions a to d, we arrive at (3.22).

In the case where the atomic image is spread over ε > 1 pixel lengths, we have n− 1 <
ε < n, n ∈ {2, 3, 4...}, and a little further work will show that the function (3.22) becomes
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Ni Ni+1Ni−1

ǫ ǫ1− ǫ

a b c d

Figure 3.2: Considerations leading to (3.22). The orange, thick double headed arrows represent
a blurred atom, and could be in any of positions a, b, c or d.

Ni →
1

n (2ε+ 1− n)

{
εNi +

(
n−1∑
k=1

[
ε− k +

1
2

]
Ni±k

)
+

1
2

[ε− n+ 1] (Ni−1 +Ni+1)

}
.

(3.23)
This does not reduce to (3.22) when n = 1 as it contains terms dependent upon ε > 1. We
now examine some different sources of blurring and the extent to which they will blur the
image.

3.5.1 Gravity

As the atoms fall under gravity, they experience an acceleration11 of g ≈ 9.79m/s2. After
a ballistic expansion of time τ they have a velocity of

u = gτ

and so the distance they travel while being illuminated from a laser with a pulse time t is

sgrav = gτt+
1
2
gt2

= gt

(
τ +

t

2

)
. (3.24)

However, the atoms will spend more time closer to their initial position and less time at
their final position, so to account for this we average over the exposure time:

〈sgrav〉 =
1
t

ˆ t

0
gt′
(
τ +

t′

2

)
dt′

=
gt

2

(
τ +

t

3

)
(3.25)

which is roughly half of the distance in (3.24). Typical values are t from 1 to 100µs and τ
from 5 to 30ms, giving 〈sgrav〉 ≈ 1 or 2µm. The distance blurred (as measured by equation
(3.25)) is plotted on the left of Figure 3.3.

11In Canberra.
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3.5.2 Temperature

Blurring due to temperature for thermal atoms is given by

kBT =
1
2
mv2

where v is taken to be the speed in a plane parallel to the imaging plane (i.e. v2 = v2
x+v2

y).
Thus a typical distance blurred is given by

stherm =
ˆ t

0
|v| dt

= t

√
2kBT
m

where t is the imaging pulse time. For rubidium with a typical t ≈ 30µs and T ≈ 1µK,
we have stherm ≈ 0.5µm.

3.5.3 Photon recoil in the imaging plane

The atoms cast a shadow on the imaging laser beam because they absorb, and then spon-
taneously emit photons from it. Each absorption will be a kick in the direction of the
beam. Each spontaneous emission can be considered a step in a random walk in velocity,
with a step length of the recoil velocity

vrec =
~k
m
.

The number of steps in the walk will be given by the photon scattering rate of the atoms,
and the pulse time t

N = Rscattt

=
Γ
2

I/Isat(
2∆
Γ

)2 + 1 + I/Isat
t.

As a random walk in 1, 2 or 3 dimensions with N steps of length l is expected to end up
a root-mean-square distance12 of l

√
N away from its starting position [37], we can expect

the final speed in a plane parallel to the imaging plane will be given by

〈
v2
N

〉
=

2~2k2

3m2

Γt
2

I/Isat(
2∆
Γ

)2 + 1 + I/Isat
(3.26)

12Although the average r.m.s. distance
˙
v2
¸
is analytically calculable, the average distance 〈v〉 is not.

Hence
˙
v2
N

¸
appears in (3.26).
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Figure 3.3: Left: Pixel lengths each atom is blurred over due to gravitational acceleration. Better
resolution is achieved at shorter expansion times and shorter imaging pulses. Right: How many
pixel lengths does the random walk from spontaneous emission push the atoms? Intensity is given
by I/Isat = 0.5, 1, 3 which are respectively solid line, large dashes, and small dashes. Detuning in
half-linewidths is given by 2∆/Γ = 0, 1, 2 which are respectively blue, yellow and red.

where the factor of 2/3 is to ignore the component of this motion in the z (imaging axis)
direction. So a generous estimate of the distance traveled during the imaging pulse is

srec =
ˆ t

0
|vN | dt′

=
ˆ t

0

~k√
3m

√
Γt′

I/Isat(
2∆
Γ

)2 + 1 + I/Isat
dt′

=
2~k

3
√

3m

√√√√ Γt3

Isat
I

[(
2∆
Γ

)2 + 1
]

+ 1
(3.27)

which will be maximum in the limit that I � Isat,

srec max =
2~k

3
√

3m

√
Γt3

which, for 87Rb with values from table 2.1, is

srec max = 0.7245 t3/2 (m, t in s)

and putting this in pixel lengths (including the effect of magnification by a factor of M =
2.14) s′ = s×M/pixel

s′rec max = 2.404× 10−4 × t3/2. (pixels, t in µs)

This is plotted in Figure 3.3.
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Figure 3.4: An image that was taken in 2006. It shows the atom laser in action. The classical
fringes can be clearly seen and would dominate the noise on the image.

3.5.4 Diffraction limit of optics

The diffraction limit to the resolution of an optical system is given by the Rayleigh criterion,

sdiff = 1.22× λ f
D

where f and D are the focal length and diameter of the lens used and λ is the wavelength
of the light. Using f = 10cm and D = 5cm (measured from the lens) gives a diffraction
limit of

sdiff = 1.22× 780.24× 10−9 × 10
5

= 1.904 µm or 0.63 pixels

which is a large fraction of the pixel length at the atom cloud13, 3.01µm. So in the
experimental regime of small imaging pulse time and ballistic expansion time, with high
detuning and low intensity, the diffraction limit will be the dominant source of blurring.

3.6 Old Images

For comparison, an absorption image is shown in Figure 3.4 which was taken before I started
my project. Classical fringes are clearly seen on the image. It is pertinent to mention that
an important part of this project was identifying and removing all the sources of these
types of classical noise, including cleaning of optical elements, re-aligning so as to avoid
interference fringes, and replacing or removing elements which introduced too much noise
via scratches, defects, aberrations, fringes etc.

13which is the pixel length P (6.45µm in this experiment) divided by the magnification M (2.14 in our
setup).
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Chapter 4

The New System

Given all of the considerations from the previous chapter, we set out to construct a new
imaging system capable of observing atomic shot noise. This chapter describes the new
imaging system and its calibration, along with some calibrative measurements of a new
Ioffe trap which was installed concurrently.

4.1 Imaging setup

The path of the imaging beam in our experiment is illustrated in Figure 4.1. The optical
fibre outputs linearly polarised light which is divergent, and so must be re-collimated by a
lens. From here the beam reflects off a mirror (so as to avoid blocking one of the 3D MOT
beams) and passes through a quarter-waveplate which circularly polarises the light, so it
will drive the closed transition illustrated in Figure 2.1. The beam enters the glass cell
of the vacuum chamber where the cold atom cloud is located, passes through the atoms,
and exits the other side of the glass cell. The image of the atoms is focused by a 10 cm
focal length lens onto a CCD camera, with a magnification factor of approximately 2. An
accurate measurement of the magnification of the image is presented in section 4.3.1. The
imaging path is on a slight angle (about 7o) so as to avoid the interferometer setup which
is occupying the perpendicular alignment. The image was brought into focus by aligning
according to the lens equation

1
f

=
1
di

+
1
do

and then crisp focus was achieved by calibration with the cloud itself. If the imaging light
is perfectly resonant then the maximum optical depth and the smallest cloud diameter will
be achieved when the cloud is in focus [5], so the position of the camera was adjusted to
achieve the maximum possible optical depth (OD) and the smallest possible Airy disk in
the image of a small cloud. However this method does not accurately hone in upon the
imaging plane as lensing at slight detunings from resonance will change the size of the
cloud’s image, so further focusing is necessary. By detuning the imaging light to either
side of the atomic resonance we can exploit the lensing effect of a dense atom cloud [5],
which causes the observed OD to increase or decrease depending upon the position of the
camera. The imaging plane is found where the detuned peak OD curve intersects the
resonant peak OD curve. This technique involving detuning is not required with dispersive
imaging techniques as they can measure very large atomic densities [44], and so focusing
can be achieved in-trap on very small dense clouds.

27
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λ/4

Fibre
Outcoupler

Atom Cloud

Glass Cell

Mirror

Lens

CCD Camera
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Figure 4.1: Diagram of the minimal imaging setup. The image distance di = 30 cm and object
distance do = 15 cm will determine the magnification of the image, M = −di/do = −2, where the
minus sign implies image inversion. Intensity fluctuations due to fringes, scratches and dust which
occur before point A (before the atoms) will not affect our calculations, but those occurring after
point B will.

Figure 4.2: The camera used was a Point Grey Research Grasshopper.

4.2 Camera Calibration

CCD cameras come in a huge variety of prices and specifications. Often, however, the
specifications of the camera (in all price ranges from $1000 to $50,000) do not match those
alluded to in the documentation, or fail to be documented at all. Thus we must measure
all the relevant parameters of the camera system accurately. The camera chosen was a
Point Grey Research Grasshopper, and its important characteristics are listed in Table
(4.1) below. This camera was chosen for its claimed quantum efficiency of 35% and 14 bit
digitization, for a low price of $2000. Of these three values, only the price was accurate.
Other, more expensive (see price bracket above) cameras were also tested, and this one
proved to be the best available.
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Name Value Source
Model Grasshopper 14S5 [45]

CCD chip Sony® ICX285 2/3” progressive scan CCD [45]
Array size 1384(H)×1036(V) [45]

Pixel dimensions 6.45µm×6.45µm [45]
Max. bit depth 4096=12 bit Experiment
System gain s 0.240± 0.002 Experiment

Quantum efficiency @ 780nm 17.4% Experiment
Well depth 17,000e− Experiment
Dark count <3 counts per 0.1ms per pixel Experiment

Table 4.1: Parameters of the PGR Grasshopper camera used in the experiment.

4.2.1 System gain

Assuming that we have the special situation in which the number of electrons X in each
well is independently poissonian distributed with mean and variance a,

X ∼ Poi(a)

then the count at each pixel on the digitised image is Y = sX (where s, the system gain,
is a multiplicative factor introduced at the analog to digital conversion stage) which has

E(Y ) = E(sX)

= sE(X)

= sa

and

Var(Y ) = Var(sX)

= s2Var(X)

= s2a.

So, we may find the system gain of the camera by taking

Var(Y )
E(Y )

= s

or more properly1, taking the gradient s of the line of best fit of the equation

Var(Y ) = sE(Y ) + c

The intercept c is a measure of the systematic error in the measurement, in this case it could
be readout noise, dark noise, or a variance floor imposed by curvature of the illumination.
Experimentally, a flat-field image will have the statistical properties we require2. Flat-

1To avoid any systematic error in the measurement, as is done in the literature [46].
2This is because a thermal light source with M modes will have a variance in photon number n of

Var(n) = 〈n〉+〈n〉2/M [47, 48]. As the number of modes increases (to a very large number for an incandescent
bulb), the variance approaches that for Poissonian statistics.
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Figure 4.3: The system gain is measured as the gradient of this plot of variance vs. mean count
number for each pixel on flat field images. Each data point is an average from all of 1036×1384
pixels on 100 images, so the standard error on each data point is of the order of 10−6 to 10−8 in
both directions, and has not been drawn in. The system gain was found to be 0.240±0.002.

field images were generated by shining a torch directly at the camera, while covering the
aperture with a variable number of sheets of blank white paper to diffuse the light and
vary the intensity. The results can be seen in Figure 4.3. Each data point is given by
the mean and variance of Y , averaged over 1036×1384 pixels on 100 images taken with
that thickness of paper. Two brighter data points were excluded from analysis for the
following reasons; with only one or two sheets of paper covering the aperture, variation in
the optical thickness of the paper will increase the variance, and the light from the torch
has not diffused enough for the image to be considered flat, again increasing the variance.

The system gain was found by this method to be 0.240±0.002 counts per electron, and
the intercept was found to be 11.3±2.5 counts2 per electron, where the errors stated are
the errors in the linear least-squares fit. Using the system gain and the maximum possible
count (4096) we can put a lower bound on the well depth,

Well depth ≥ (max count)
s

= 4096/(0.240± 0.002)

= 17066± 142

≈ 17, 000 electrons.

Of course the well depth may be greater than this, to allow some pixels to be saturated
without blooming into adjacent pixels. In fact, another camera which uses the same Sony
ICX285 CCD chip [49] quotes the well depth at 15,000 electrons, but this is of course only
the maximum number which can be read out, which is an engineering decision to avoid
blooming and not an inherent property of the CCD array.
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4.2.2 Quantum efficiency

The quantum efficiency is defined as the fraction of photons hitting a pixel which result
in an electron in the well. It can be determined by calibrating the intensity for a given
exposure time to the number of counts on an image. Images such as on the left of Figure
4.4 were taken for various total imaging laser powers P and camera exposure times t. The
sum of the pixel counts in the rectangular Region Of Interest (AROI = d1d2 where di are in
pixels) for the image were divided by the number of pixels in the ellipse of interest (defined
by Aellipse = πd1d2/4,3 see Figure 4.4) to arrive at the average count per pixel4 〈φ〉;

〈φ〉 =
4

πd1d2
·

∑
all pixels in ROI

φi. (4.1)

This was plotted against the total power in the imaging beam P (µW) and the exposure
length of the image t(ms) in the right of Figure 4.4. A least squares fit of the form

〈φ〉 = α1 · P (µW) · t(ms) + α2

was performed which yielded α1 = 1670±5 and α2 = 3±2. The value of α2 was thereafter
discarded as insignificant, α2 ≈ 0 as its contribution is small and probably largely due
to the inclusion of the dark image corners in the sum in equation 4.1. The conversion
between the total power in the imaging beam P (µW), and the power incident upon one
pixel p(µW) is the ratio of the areas which they cover;

p(µW) = P (µW)× Apixel
Aellipse

= P (µW)× 4
πd1d2

Thus each pixel’s count may be converted to an intensity at the CCD chip of

I(mW cm−2) =
p(mW)

Apixel(cm2)

=
10−3P (µW)
Apixel(cm2)

× 4
πd1d2

=
φ

α1t(ms)Apixel(cm2)× 103
× 4
πd1d2

= 1.46× 10−5 × φ

t(ms)

with a 0.4% error propagated from α1. The unusual units have been chosen because they
are convenient and common units for intensities relevant to atom-light interactions5.

The quantum efficiency can now be calculated by the ratio of the number of electrons

3The root mean square radius was calculated to be
√
d1d2/4 = 353.9 px.

4This assumes that the dark pixels in each of the corners contribute little to the image.
5For example the saturation intensity for the 52S1/2 → 52P3/2

87Rb transition |F = 2,mF = 2〉 →
|F = 3,mF = 3〉 is Isat = 1.67mW cm−2[38]. Since 〈φ〉max = 4096 and t ≈ 0.1 ms this gives us an
intensity range of 0 to 1.4× Isat at the camera, which, with a magnification of ≈ 2 means an intensity of
2.8× Isat at the position of the atoms. This can be increased by going to shorter exposure times.
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Figure 4.4: To calibrate the intensity of the light incident upon the camera, the count per pixel
was measured from images (left) for various total imaging laser powers P and camera exposure
times t. The mesh (right) represents the fitted equation counts = α1 ·P (µW) · t(ms)+α2. The fit
gave α1 = 1670± 5 and α2 = 3± 2. The mesh has a ceiling at 4096 which is the maximum count
on a pixel. Images with higher counts per pixel were saturated in parts, and were excluded from
the analysis.

m sitting in each pixel’s well to the number of photons n incident on that pixel:

Q.E. =
m

n

=
〈φ〉/s

pt/Ephoton

=
〈φ〉Ephoton

10−6P (µW)10−3t(ms)s
× πd1d2

4

=
α1 × 109

s
× hc

λ
× πd1d2

4
= 0.174 or 17.4%

This result is about half of the Q.E. recorded in the data sheet for a similar camera with
the same ICX285 CCD chip [49].

4.2.3 Dark counts

Dark counts and readout noise were measured for various exposure times and then ignored
as insignificant. Combined, they contributed approximately 3 counts to each pixel during
the 100µs exposure which we used.

4.3 Atom Cloud Calibration

The properties of the atom cloud are extracted from images, so it is pertinent that we
know quantitatively what those images are telling us. This section details the calibration
necessary to make accurate measurements.
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Figure 4.5: The magnification of the imaging setup was measured to be 2.14±0.02 by dropping a
cloud of atoms and taking images at times t after release. The magnification was determined by a
parabolic fit to the atoms’ fall under gravity, measured by the centre of a gaussian fit to the cloud.

4.3.1 Magnification of Imaging setup

The magnification of our imaging setup (nominally 2) was determined by timing the fall
of an atom cloud released from the trap. The cloud was dropped by radio-frequency
outcoupling a small atom pulse, t milliseconds before taking an image. The height of the
centre of the atom cloud was measured by fitting a gaussian to each image. Finally, the
magnification was determined by fitting the parabola

h = h0 −
1
2
at2

to the atom’s vertical trajectory as is shown in Figure 4.5. The magnification was calculated
to be 2.14±0.02 by the equation

M =
ap

g

where a is the fit parameter for acceleration in px/s2, p is the pixel size in m and g =
9.79m/s2 is the acceleration due to gravity.

Other methods have been proposed to measure the magnification of the imaging system,
such as the crossed beam method. This involves splitting of a fraction of the imaging beam
which is also directed at the location of the atoms. The beams cross at this location and so
act a separate rays diverging from the object position. If the second beam is aligned so as
to overlap the first on the CCD array, an interference pattern will be observed which can
be used to measure the angle at which the beams converge to the CCD. The ratio of this
angle to the angle at which the beams intersect at the atom position is the magnification
of the imaging setup. For details, see [44]. This would be required if we were to measure
g using this setup.

4.3.2 Harmonic trap frequencies

We must also measure the properties of the Ioffe trap in which the cold atoms reside. In the
approximation that the Ioffe trap is harmonic, the only parameters that we need to measure
are the trap frequencies - the oscillation frequencies of a classical particle in the trap - in
each direction. The radial trap frequency fr = ωr

2π was measured by applying an oscillating
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Figure 4.6: Left: The radial trapping frequency was measured to be 209.2±0.3 Hz by resonantly
heating the cloud with an oscillating magnetic field with frequency f . In this graph the average
width of the cloud (measured as standard deviation of a gaussian fit) after ballistic expansion is
plotted against f . The fitted curve is a Lorentzian lineshape used to measure the centre of the
resonance. Right: The axial trapping frequency was measured to be 19.4±0.1 Hz by giving the
atom cloud a ‘kick’ and then allowing it to slosh backwards and forwards until a time t later when
the trap was turned off. In this graph the horizontal displacement of the cloud after ballistic
expansion is plotted against t. Both axes are measured against arbitrary reference points. The
fitted curves are a sine wave (full) and an exponentially decaying sine wave (dotted). The decay
is attributed to coupling to the orthogonal oscillation modes in the trap. Two measurements have
been taken at each time t to give an idea of the uncertainty.

magnetic field at a variable frequency f , using the RF outcoupling coil already in position.
The cloud experienced a peak in temperature due to resonant transfer of energy to the
atoms when the applied frequency f matched the trap parameter fr. Temperature was
measured by width of a Gaussian fit to the cloud, and the result is plotted in Figure 4.6.
A Lorentzian lineshape has been fit to accurately determine the centre of the resonance,
and thus the radial trapping frequency was measured to be 209.2±0.3 Hz.

The axial trap frequency fa = ωa
2π was measured by applying a short pulse from a

second solenoid in the axial direction, causing in-trap oscillation. The frequency of this
oscillation was measured by releasing the atoms from the trap a time t later, and measuring
the displacement in the x direction. In this way, the axial trap frequency was measured to
be 19.4±0.1 Hz, as is shown in Figure 4.6.

4.3.3 Temperature calibration

It is important to measure the temperature of an atom cloud properly as this provides the
basis for number calibration, and it quantifies the thermal contribution to blurring.

4.3.3.1 Derivation of the Thermal Cloud Density

We begin by using a semi-classical treatment to evaluate of the density of atoms in a
thermal cloud

ρth(r) =
N −N0

V

at temperatures close to the transition temperature, where N is the total number of atoms
in volume V and N0 is the number of atoms in the condensate in the volume V . The Bose
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distribution function for the number of atoms Ni occupying an eigenstate with energy εi
is given by

Ni =
1

e(εi−µ)β − 1
(4.2)

where the chemical potential µ is determined such that

N =
∑
i

1
e(εi−µ)β − 1

is the total number of particles in the system. Following [50], we find the density by
integrating (4.2) over d3p/h3,6 with the explicitly semi-classical energy εp(r) = p2

2m + V (r).
Thus

ρth(r) =
1
h3

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

d3p

e

“
p2

2m
+V (r)−µ

”
β − 1

. (4.3)

But, before launching into this integral, it is important to realise that what we image is
this thermal density after it has undergone ballistic expansion for a time t. Equation (4.3)
represents only the in-trap density. This means that we must evaluate the potential V at
the position r0 when the particle was in-trap, and then integrate over all possible starting
positions for the same final position. Realizing that in the absence of collisions,

p =
m

t
(r− r0)

we can integrate over equation (4.3) like so,

ρth(r, t) =
1
h3

˚
d3r0

˚
d3p

δ3
(
r− r0 − p t

m

)
e

“
p2

2m
+V (r0)−µ

”
β − 1

=
1
h3

ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

d3p
1

e

“
p2

2m
+V (r− t

m
p)−µ

”
β − 1

.

Taking a harmonic trapping potential

V (r) =
m

2
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

V

(
r− t

m
p
)

=
m

2

∑
i=1,2,3

ω2
i

(
xi −

tpi
m

)2

=
m

2

∑
i=1,2,3

[
ω2
i x

2
i −

2ω2
i xitpi
m

+
(
ωitpi
m

)2
]

=
∑

i=1,2,3

[
mω2

i x
2
i

2
− ω2

i xitpi +
ω2
i t

2p2
i

2m

]

6This is because the phase-space volume element is d3pd3x/h3, here we want a density so we leave out
the d3x.



36 The New System

we see that

ρth(r, t) =
1
h3

˚
d3p

[
exp

(
β

(
p2

2m
+ V (r− t

m
p)− µ

))
− 1
]−1

=
1
h3

˚
d3p

exp

β
−µ+

∑
i=1,2,3

[
mω2

i x
2
i

2
− ω2

i xitpi +
(
1 + ω2

i t
2
) p2

i

2m

]− 1

−1

.

Completing the square in the quadratic expression

mω2
i x

2
i

2
− ω2

i xitpi +
(
1 + ω2

i t
2
) p2

i

2m

=

(
1 + ω2

i t
2
)

2m

(
m2ω2

i x
2
i

1 + ω2
i t

2
− 2mω2

i xitpi
1 + ω2

i t
2

+ p2
i

)
=

(
1 + ω2

i t
2
)

2m

(
pi −

mω2
i xit

1 + ω2
i t

2

)2

+

(
mω2

i x
2
i

2
− m

(
ω2
i xit

)2
2
(
1 + ω2

i t
2
))

=
q2
i

β
+
mω2

i x
2
i

2

(
1− ω2

i t
2

1 + ω2
i t

2

)
=

q2
i

β
+
mx2

i

2

(
ω2
i

1 + ω2
i t

2

)
where I have substituted

qi =

√
1 + ω2

i t
2

2mkBT

(
pi −

mω2
i xit

1 + ω2
i t

2

)
.

Thus

ρth(r, t) =

 3∏
i=1

1√
1 + ω2

i t
2

[2mkBT
h2

]3/2

×
˚

d3q

exp

−βµ+
∑

i=1,2,3

[
q2
i +

βmx2
i

2

(
ω2
i

1 + ω2
i t

2

)]− 1

−1

=

 3∏
i=1

1√
1 + ω2

i t
2

( 1
λT
√
π

)3 ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

d3q
1

eq2/ϑ− 1
(4.4)

where the thermal De Broglie wavelength is given by

λT =

√
h2

2πmkBT
(4.5)

and I have defined

ϑ = exp

(
β

(
µ−

3∑
i=1

mx2
iω

2
i

2
(
1 + ω2

i t
2
))) . (4.6)
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Using the Taylor series expansion

1
1
ξ − 1

=
∞∑
j=1

ξj (4.7)

with ξ = ϑe−q2 transforms equation (4.4) into

ρth(r, t) =

 3∏
i=1

1√
1 + ω2

i t
2

( 1
λT
√
π

)3 ∞∑
j=1

ϑj
ˆ ∞
−∞

ˆ ∞
−∞

ˆ ∞
−∞

e−jq
2
d3q

= (4.8)

=

 3∏
i=1

1√
1 + ω2

i t
2

 1
λ3
T

∞∑
j=1

ϑj

j3/2

ρth(r, t) =

 3∏
i=1

1√
1 + ω2

i t
2

 1
λ3
T

Li3/2 (ϑ) . (4.9)

where Lis (z) is the polylogarithm function7

Lis (z) =
∞∑
n=1

zn

ns
. (4.10)

This expression is valid and most useful for temperatures around the condensation tem-
perature Tc. Equation (4.9) will be used to derive the column density in the next section,
to determine the temperature in section 4.3.3.5, and to derive the condensate fraction as
a function of temperature in section 4.3.4.

4.3.3.2 Calculation of the Optical Thickness of the Thermal Distribution

For comparison with imaging we must find the 2D distribution of atoms after integration
through all values along the imaging axis. This known as the column density and is given
by

nth (x, y, t) =
ˆ ∞
−∞

ρth(r, t) dz (4.11)

where z is the coordinate along the imaging axis. Labeling the normalisation constant in
equation (4.9) as

κ =

 3∏
i=1

1√
1 + ω2

i t
2

( 1
λT

)3

7Some properties of this function are mentioned for interest. By direct differentiation it can be seen
that d

dx
Liγ (x) =

Liγ−1(x)

x
. By evaluation it can also be seen that Liγ (1) =

P∞
n=1

1
nγ

= ζ (γ), Liγ (0) = 0,
while it is also illustrative to know that the cases of γ ∈ {1, 0,−1,−2...} are elementary functions since
Li1 (x) is the Taylor series expansion of − ln (1− x).
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and evaluating the integral,

nth (x, y, t) =
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where I have defined

ς = exp
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]
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So the 2D integrated profile of a thermal atom cloud is:

nth (x, y, t) = κ

∞∑
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1
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=
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which is in full
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where az =
√

~
mωz

is the harmonic oscillator length in the z direction.

4.3.3.3 Derivation of the Density of the Condensate

The macroscopic state of the condensate is well described by the Gross-Pitaevski Equation
[39]



§4.3 Atom Cloud Calibration 39

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vext(r) + Uint |Ψ(r, t)|2

)
Ψ(r, t) (4.14)

where Vext(r) is the external potential the particles are in, (usually a harmonic trap) and
Uint |Ψ(r, t)|2 represents the interaction energy, i.e. the energy required to have a density
of |Ψ(r, t)|2 particles close enough together, where Uint = 4π~2a

m is the coupling constant
and a is the s-wave scattering length of 87Rb. In this mean field- approximation, Ψ(r, t)
is the mean-field i.e. the expectation of an annihilation operator at a given position and
time;

Ψ(r, t) =
〈
ψ̂(r, t)

〉
=

〈
δ(r− r′, t− t′)

∑
i

ciâi

〉
,

where âi annihilates a single particle in the energy eigenstate εi. The time independent
GP equation is [50]

µΨ(r, t) =
(
−~2∇2

2m
+ Vext(r) + Uint |Ψ(r, t)|2

)
Ψ(r, t) (4.15)

where the eigenvalue is not the usual energy per particle E, but instead we have i~ ∂
∂tΨ→

µΨ where µ is the chemical potential. In the non-interacting case Uint = 0 and µ = E,
but in the interacting case since Uint 6= 0 we have µ 6= E [50].

In the Ideal Gas limit, the particles are non-interacting, and thus Uint = 0. Then
equation (4.14) becomes

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vext(r)

)
Ψ(r, t)

which is just N independent one-particle Schrödinger equations. Thus the condensate
shape will be simply the shape of the ground state energy eigenfunction of the trap. In
the harmonic case Vext(r) = m

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, the equation is separable, and the

harmonic oscillator solutions are given by
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)
where ξi =

√
mωi

~ xi is the normalized H.O. coordinate, ω̄ = 3
√
ωxωyωz is the geometric

mean of the trapping frequencies, and Hn(x) is the nth Hermite polynomial.

So the BEC has the shape of a gaussian in this limit, as

|ψ000(r)|2 =
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2
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so that

|Ψc(r)|2 = Nc |ψ000(r)|2

= Nc
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)3/2

e−
m
~ (ωxx2+ωyy2+ωzz2). (4.16)

Now when the trap is turned off, the wavefunction evolves from the state above as a free
particle when considered in the centre-of-mass frame (which will fall under gravity),
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so Ψc(r, t) is given in the usual fashion [51] by
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and finally, the density is given by
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which is still a Gaussian. This is a good approximation for small atom numbers, where
the interaction term Uint will play less of a role. For the case of a large number of atoms
in the ground state, the Thomas-Fermi approximation is better.

In the Thomas-Fermi approximation it is assumed that since the kinetic energy in
the ground state is minimal, we may as well ignore it altogether at T = 0. This means
that − ~2∇2

Ψ(r,t)2mΨ(r, t) � Vext(r), Uint |Ψ(r, t)|2 and equation (4.14) becomes (in the time-
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independent case)

µΨ(r) =
(
Vext(r) + Uint |Ψ(r)|2

)
Ψ(r)

µ = Vext(r) + Uint |Ψ(r)|2

|Ψ(r)|2 =

{
µ−Vext(r)
Uint

µ ≥ Vext(r)

0 µ < Vext(r)
(4.18)

which in the case of a harmonic potential Vext(r) = m
2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
gives the

BEC a paraboloid density function. At the edges of the function where µ = Vext(r), the
second derivative diverges to infinity and the interaction energy is zero so the assumption
− ~2∇2

Ψ(r,t)2mΨ(r, t) � Uint |Ψ(r, t)|2 breaks down. Thus the edges will be ‘rounded off’ a
little by the kinetic energy contribution here. Equation (4.18) becomes exact in the limit
T = 0, N →∞ [50]. It can be shown that this macroscopic wave function will evolve to a
rescaled paraboloid under ballistic expansion [39, 40].

4.3.3.4 Calculation of the Optical Thickness of the Condensate Fraction

To find the column density of the BEC for comparison with imaging we must integrate
along the imaging axis z.

nc (x, y, t) =
ˆ ∞
−∞

ρc(r, t) dz (4.19)

In the ideal gas limit the density of the condensate is given by equation (4.17). Thus
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In the Thomas-Fermi limit the density of the condensate is paraboloidal, so

ncTF (x, y, t) =
ˆ ∞
−∞

ρcTF(r, t) dz

=
ˆ
parabola

A(t)−X(t)x2 − Y (t)y2 − Z(t)z2 dz

= A′(t)−X ′(t)x2 − Y ′(t)y2 (4.20)

which is still paraboloidal. Thus we use a parabolic fit to the condensate in section 4.3.4.

4.3.3.5 Measurement of temperature

Approximating the polylogarithm function Li2(ς) by the first term in the sum (4.10) (see
Figure 4.7) , the thermal column density given by equation (4.13) becomes
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Figure 4.7: Comparison of Li2(e−x
2
) (blue) with its first few terms

∑n
j=1

e−jx/j2 for n = 1 (red),
2 (yellow) and 3 (green). It can be seen that the first order gaussian term dominates in the wings,
and so gives a reasonable approximation to find the temperature.
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$. Assuming µ ≈ 0 for large total atom number N , the density reduces

further to
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which is a gaussian with standard deviation in the ith direction given by

σ2
i =

(
1
ω2
i

+ t2
)
kBTi
m

. (4.22)

This suggests a simple method for estimating the temperature of a cloud of atoms by fitting
a gaussian to the thermal portion. Equation (4.22) is conveniently of the form y = mx+ c

(where y = σ2
i , x = t2) and thus the gradient of this equation is related to the temperature

by the factor kB/m. Finding the temperature of an atom cloud by this method involves
taking several pictures of the same cloud at different expansion times, and is illustrated on
the left of Figure 4.8. To use this method to fit a bimodal cloud, a bimodal fit must be
used. We use a parabolic fit to the BEC fraction as per (4.18) with a Gaussian fit to the
thermal fraction as per equation (4.21), both fit over the entire cloud.

A quicker method for finding the temperature of the cloud is to take a single absorption
image and use the trap frequencies ωr and ωa to calculate the temperature directly via
equation (4.22). This is illustrated on the right of Figure 4.8 , where it is compared to the
previous method. The one-shot method has the advantage that more measurements can be
made before long-duration fluctuations (over about 30 minutes or so) can affect the BEC
machine, thus it is this method that is used for number calibration in the next section.

4.3.4 Number calibration

4.3.4.1 Derivation of condensate fraction

In the thermodynamic limit N → ∞, µ → 0, the number of atoms in the thermal cloud
Nth = N −N0 can be obtained by integrating equation (4.9) over all space
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Figure 4.8: Two methods were compared for finding the temperature of the thermal portion of
the cloud. Left: Temperature measurement by the gradient method from multiple absorption
images, using equation (4.22). The upper (lower) two lines find the temperature from the standard
deviation width in the x and y directions of a cloud where evaporation was stopped at 5MHz
(1.5MHz) . Right: The temperature as calculated by the gradient method (orange triangles,
equation (4.22)) is compared to the temperature as calculated from a single absorption image and
the trap frequencies as measured in section 4.3.2 (blue circles). Theoretically, Tx = Ty = T for a
single cloud and this data conforms within its uncertainties.
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1/jz is the Riemann zeta function. Dividing through by N gives the
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Figure 4.9: Fraction of atoms in the ground state N0/N against temperature T rescaled to the
critical temperature in the thermodynamic limit T0 = ~ω

kB
3

√
N
ζ(3) . The red line is the thermodynamic

prediction for N →∞, i.e. equation (4.23). The black dashed line is a line of best fit of the form
N0/N = 1− (T/αT0)3 which gives the intercept as α = 0.995±0.007. For a number of approximately
3 × 105 atoms at transition, a finite-number correction (4.25) to the thermodynamic limit gives
α = T finite0 /T0 = 0.989.

where I have defined T0 as the function of N given by

T0 =
~ω
kB

3

√
N

ζ(3)
. (4.24)

An accurate finite number correction N 9∞ has been derived by Ketterle and van Druten
[52] which gives

T finite
0 =

~ω
kB

(
3

√
N

ζ(3)
− π2

12ζ(3)

)
. (4.25)

4.3.4.2 Measurement of condensate fraction

In our measurement of the critical temperature shown in Figure 4.9, we had approximately
3 × 105 atoms at transition, which makes T0 = 243 nK and the finite-number correction
T finite

0 = 0.989× T0 = 242 nK.
To measure the fraction of atoms in the ground state N0/N, a bimodal fit was performed

over the whole cloud, and the width of the thermal gaussian was used to determine the
temperature T as in the previous section. Our experimental result follows the predicted
curve (4.23) nicely, so it compares favourably with the literature8 [4]. The smooth bend
(as opposed to the sharp corner of equation (4.23)) in the data around T/T0 ≈ 1 is probably
due to our fitting method, which will tend to overestimate the condensate fraction in this
region. This is because of the extra density in the Bose-enhanced distribution around the

8And even more favourably [53] against some.
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centre of the cloud (as compared to our gaussian fit , see Figure 4.7) will be fit instead by
the parabola we have designed to fit the condensate fraction.

4.3.4.3 Calibration of atom number

To calibrate our atom number with this data, use (4.23)
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3
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and rearrange for N ,
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.
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+ 2
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19.4

)2

= 0.027.

So we have an uncertainty in our absolute atom number measurements of 2.7%.

4.4 What should it look like?

A useful thing to do at this stage is to simulate our data numerically so we know what
to expect. For the purposes of the simulation, the simple absorption model of sections
3.2.1 and 3.4.2 was implemented. A realistic number (105) of atoms was distributed with
a gaussian shape, over a pixelated ‘image’, n(x, y). Then, atom shot noise was added to
the image by adding a random poissonian-distributed deviation from each pixel’s previous
value. This is shown in Figure 4.10. Photon shot noise was also included, by creating
a background image m0(x, y) which had poissonian variation in electron count, around a
mean of 10, 000 e− (which was chosen as a value for a reasonably full electron well, without
inducing saturation of the CCD array, c.f. section 4.2.1). Then, the second image mf (x, y)
had the atom cloud’s shadow imparted upon it by equation(3.3),

mf (x, y) = 〈m0(x, y)〉 e−n(x,y)σ ,

followed by the addition of poissonian photon shot noise to each pixel in mf (x, y). A
final step in preparing the data is to blur the images m0(x, y) and mf (x, y) (c.f. section
3.5) by applying a filter which replaces each pixel by a weighted average of itself and its
nearest neighbours, as in equation (3.22). Once the images have been generated, the atom
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Figure 4.10: The theoretically computed atom density image, with no blurring applied. Height
indicates the number of atoms per pixel. The projections are the integrated cross-sections of the
image, normalised to be the same height as the cloud.

distribution is again calculated by equation (3.4),

n′(x, y) =
1
σ

ln
(
I0(x, y)
If (x, y)

)
Through this method, the atom distribution calculated will have the appropriate noise
statistics and blurring as it would in real experimental data. An image generated by this
method is shown in Figure 4.11, along with its noise as calculated by the nearby averaging
procedure (see section A.3). It is important to note the striking difference between the
atomic shot noise as seen without any blurring processes, and as seen with blurring. It is
the latter which we will see in the experiments due to the numerous effects described in
section 3.5, which will decrease the noise observed from the expected level when measured
pixel by pixel9. To observe atomic shot noise on these blurry images, we must bin the
pixels together to form larger N ×N pixel bins. This effectively reduces the fraction of the
pixel length blurred across from ε to ε/N2. The effectiveness of this method can be seen on
the right of Figure 4.11.

9However, the noise is still there and still reduces the sensitivity of our atom number counting. The
blurring simply violates the assumption that each pixel is an independent sample from the atom and
photon distributions, because the measured values of each pixel are correlated by equation (3.22).
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Figure 4.11: Numerical data computed to have the statistical properties of blurred atomic shot
noise on an atom cloud of 5× 105 atoms. Left, Bottom: The difference from the nearby average
on the theoretical atom cloud with no blurring. Left, Top: The atomic shot noise variance as
calculated from the noise image below. Center, Bottom: The difference from the nearby average
on the theoretical atom cloud after blurring by ε = 0.5 pixels. Center, Top: It is seen that
blurring severely impacts our ability to see the atomic shot noise variance in the raw image. This
data is consistent with previous attempts to see shot noise, such as [19]. Right, Bottom: The
difference from the nearby average on the theoretical atom cloud after blurring by ε = 0.5 pixels,
but then binned into 5 × 5 pixel bins. Right, Top: The atom shot noise becomes visible once
more after binning into 5 × 5 pixel bins, as this effectively reduces the fraction of a pixel blurred
across to ε/N2 = 0.5/25 = 0.02 .
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Chapter 5

Observation of Atomic Shot Noise

Let us analyse an experimental image of a small thermal cloud, with the aim of comparing
it to the numerical data of the previous chapter. The cloud has a temperature of 510nK,
and a total of 2.5× 105 atoms, and its standard deviation widths σi in the horizontal and
vertical directions are 72µm and 38µm respectively. The average number of electrons in
the background image is 〈m〉 = 10, 400; which is almost the full well depth of the CCD
array, without saturating the image. Thus, this cloud is the perfect candidate to compare
to the predictive data in Figure 4.11. The experimental analysis is shown in Figures 5.1
and 5.3. Figure 5.1 shows that our data is in fact blurred slightly, and so the variance
only shows half of the atom shot noise. As such, we see only part of the atomic shot noise
on this image. An analysis of the sources of blur as per section 3.5 shows the following
breakdown of the blurring: thermal blurring = 0.3µm, gravity blurring = 0.8µm (only in
the vertical direction), photon recoil blurring = 0.6µm (with ∆ = 6.1MHz, I/Isat ≈ 3),
diffraction limit of optics = 1.9µm. It would seem from this data that the main source of
blurring is the diffraction limit of our imaging system. Even though the data in Figure 5.1
shows half the expected atom shot noise, it is still more than twice as good as the data in
[19], which achieved only a factor of 0.17 of atomic shot noise.

To overcome this blurring effect, we bin the pixels together, effectively reducing the
fraction of a pixel length blurred across, ε. The same atom cloud image is analysed in
Figure 5.2, but this time it has been binned into 2× 2 pixels before analysis. Here it can
be seen that the variance on each binned pixel agrees quantitatively with the theoretical
result for atom + photon shot noise, as predicted by the theory (see the right of Figure
4.11). For larger bin sizes, the noise stays on this limit until the the bin size gets so large
that the approximation (3.5) is invalid, the nearby averaging procedure envelops the entire
cloud, or the assumption that we are sampling a small fraction of the cloud (inherent
in equation (3.11)) is incorrect. This shows that classical noise is not the source of the
variance, because if it were, the noise would increase beyond the atomic noise limit with
further binning. Figures 5.1 and 5.2 show the measured photon shot noise as slightly higher
than the predicted value (photon shot noise can be found as the intercept in the variance
graphs).

It is interesting to compare these results to the situation where the detuning ∆ from
the resonant imaging frequency is small. Figure 5.3 shows the analysis of a similar atomic
cloud, this time imaged with 2MHz detuning from the resonant imaging frequency (as
opposed to 6.1MHz in the previous figures). It is fairly clear from Figure 5.3 (b) that
the blurring has increased, and the atomic shot noise is now unresolvable from the photon
shot noise. As all the parameters of the experiment are the same except for the detuning
∆, the only contribution to the blurring which has changed is the random walk due to
photon recoil. This has changed because at smaller detunings, the atoms have a higher
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Figure 5.1: Experimental data from a small atomic cloud, with no binning. (a) The atomic
density image. The height on the image indicates the number of atoms at each pixel. The image is
360µm wide and 210µm high at the atom cloud, and was taken after a 5.7ms ballistic expansion,
with a 30µs imaging pulse which was detuned 6.1MHz from the atomic resonance. The cloud
has a temperature of 510 nK, and a total of 2.5 × 105 atoms. The projections are the integrated
cross-sections of the image, normalised to be the same height as the cloud. (b) The theoretical
photon shot noise is shown in black (x’s, (iii)) and the theoretical atomic shot noise (with photon
shot noise) is shown in red (dashed, (i) ). The blue points (ii) are experimental measurements of
the variance of the image in (a) on the left, and are below atom shot noise due to blurring effects.
The blue line is a line of best fit to the experimental data points. (b) Inset: Difference of the
image in (a) from each pixel’s nearby average (see appendix A.3), used to calculate the variance
for each mean atom number on the left. Compare this image with the theoretical one in the centre
bottom of Figure 4.11.

scattering rate and so the random walk spreads them further. The new estimate of the
distance blurred due to photon recoil from equation (3.27) is 1.1µm, now larger than all
the other contributions other than the diffraction limit. Numerical simulations confirm
that this increase in blurring is large enough to wash out the atomic shot-noise.

Binning the data improves the situation slightly, but not enough to get back near the
theoretical atomic shot noise. It is interesting that this change in blurring due to photon
recoil is the discriminating factor between data in which we can see atomic shot noise and
that in which we cannot.

The important point is that Figure 5.2 shows that it is in fact clearly possible to observe
the poissonian atomic shot noise, well and above the photon shot noise. It is encouraging to
see such a large margin between the two, because this allows for the possibility of detecting
sub-poissonian quantum noise on a Bose Einstein condensate. The only restriction now
is that we need a BEC large enough to be able to bin our pixels together and see what
its atomic quantum noise looks like, since at present our BECs are too small to achieve
quantum noise visibility by this technique. Another way to approach absorption imaging
of shot noise on a BEC is to improve the diffraction limit of the imaging system, as this is
a major contribution to blurring of the image (see section 3.5). This would be achieved by
using a shorter focal length lens, closer to the atom cloud. Increasing the magnification of
the imaging system will not help yet, as our spatial resolution is now limited by blurring.
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Figure 5.2: Experimental data from the same small atomic cloud shown in Figure 5.1, with 2× 2
pixel binning to overcome the blurring effects. (a) The atomic density image. The height on the
image indicates the number of atoms at each pixel. The image is 360 µm wide and 210 µm high
at the atom cloud, and was taken after a 5.7 ms ballistic expansion, with a 30 µs imaging pulse
which was detuned 6.1MHz from the atomic resonance. The cloud has a temperature of 510 nK,
and a total of 2.5 × 105 atoms. The projections are the integrated cross-sections of the image,
normalised to be the same height as the cloud. (b) The theoretical photon shot noise is shown
in black (x’s, (iii)) and the theoretical atomic shot noise (with photon shot noise) is shown in red
(dashed, (i) ). The blue points (ii) are experimental measurements of the variance of the image
in (a) on the left, and it is clear that atom shot noise has been recovered by the binning. (b)
Inset: Difference of the image in (a) from each pixel’s nearby average (see appendix A.3), used
to calculate the variance for each mean atom number on the left. Compare this image with the
theoretical one in the bottom right of Figure 4.11.
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Figure 5.3: Experimental data from a similar cloud to the one in Figures 5.1 and 5.2, but this
time imaged with near-resonant light. (a) The atomic density image. The height on the image
indicates the number of atoms at each pixel. The image is 360 µm wide and 210 µm high at the
atom cloud, and was taken after a 5.7 ms ballistic expansion, with a 30 µs imaging pulse which
was detuned by 2MHz from the atomic transition. The cloud has a temperature of 510 nK, and
a total of 2.5 × 105 atoms. (b) The theoretical photon shot noise is shown in black (x’s, (iii))
and the theoretical atomic shot noise (with photon shot noise) is shown in red (dashed, (i) ). The
blue points (ii) are experimental measurements of the variance of the image in (a) on the left, and
evidently the atom shot noise has been washed out by the blurring, which is increased as compared
with the blurring in the detuned image of Figure 5.1. (b) Inset: Difference of the image in (a)
from each pixel’s nearby average (see appendix A.3), used to calculate the variance for each mean
atom number on the left. Compare this image with the theoretical one in the centre bottom of
Figure 4.11.



Chapter 6

Application to Atom Interferometry

Atom interferometers offer fundamental advantages over light interferometers in the field of
precision measurement. The classic model presented in the introduction, showing that ten
orders of magnitude in precision might be gained by using atoms in a Sagnac interferometer,
is but one example of the increased precision atom interferometry offers [1]. In the days
before BECs were realised, interferometers of matter-waves used thermal beams and micro-
manufactured double slits or gratings [25]. Coherent atom interferometers from BECs are
mostly constructed using either radio-frequency pulses [54] or sheets of light [55] as the
diffraction gratings and beam splitters. These are much quicker and easier to construct and
change during the course of an experiment, especially inside the vacuum chambers in which
the cold-atom experiments take place. Interferometers built using coherent atom lasers
(with a BEC as the source) have the possibility of using quantum mechanical squeezing
to increase measurement precision, and this squeezing may be detectable by analysing the
atomic noise on an absorption image. For almost all measurements up until now, thermal
beams have been preferred since the reduction in noise by using coherent, squeezed sources
must be balanced against the increase in signal gained by having a large number of atoms
going through the device. However, as the size of BECs created gets larger, and as the
noise on absorption images gets lower, atom lasers can potentially become the optimal
choice. The other advantage cold atom interferometers have over thermal atomic beam
interferometers is that they have a much narrower velocity spread. Since two-photon
Raman interactions are highly velocity selective [37], beam splitters using this technique
have a greater coherent transfer of the atom population using cold atom cloud sources.
This is especially true where high-momentum-transfer beam splitters are used [56].

6.1 Our Atom Interferometer

Following the creation of a BEC as detailed in chapter 2, a pulse of coherent atoms from
the BEC is out coupled from the trapped |1,−1〉 state to the untrapped |1, 0〉 state by
a radio frequency pulse. The coherent atom pulse falls under gravity and passes through
two ‘beam splitters’ which form the basis of the interferometer. These beam splitters are
sheets of light which induce two-photon Raman transitions (see the original idea in [57] or
a quick summary in [37]) between the |1, 0〉 and |2, 0〉 internal states (see Figure 6.1 (a)).
After the atoms have passed through the interferometer, we detect how many are in each
state. This is done by suddenly switching on the Ioffe trap for a short time to separate
the clouds based upon their second-order Zeeman energy shifts, effecting a Stern-Gerlach
experiment. Once the clouds in each state are separate, they are imaged as usual by
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Figure 6.1: Scheme of atom interferometer. The notation |F,mF 〉 is used here. Left: A coherent
atom cloud is out-coupled by a radio frequency pulse, which transfers some atoms in the BEC
from the trapped |1,−1〉 state to the untrapped |1, 0〉 state. These atoms then fall under gravity
and form the atom laser. In interaction region 2 some of them are transferred to the |2, 0〉 state
by the Raman beam splitter. Atoms then evolve in the region between the beam splitters and
develop a phase difference θ until interaction region 3, at which point the states are recombined
by another Raman beam splitter. We then separate the the |1, 0〉 and |2, 0〉 internal states by the
second-order Zeeman effect. How many atoms are in each state determines θ. Right: (a) Diagram
illustrating the energetics of the two-photon Raman transition. Neither photon has sufficient energy
to excite the transition between the 52S1/2 and the 52P3/2 fine structure levels, but together they
can excite a two photon transition between the |1, 0〉 and |2, 0〉 atomic hyperfine 52S1/2 levels.
(b) Experimentally, the two sheets of light used for the interferometer are generated using the
birefringence of a calcite crystal. The small difference in frequency between the two photons is
realised by adding sidebands to a Raman laser beam with an electro-optic modulator.

absorption imaging1. The relative atom number (N1−N2)/N relates to the phase difference
acquired between the two states, and the result of many such experiments is shown in
Figure 6.3, where the phase is adjusted via the two-photon detuning δ of the Raman light
sheets. The resulting interference fringes are known as Ramsey fringes, because Ramsey
was the first to try using two interaction regions rather than one, to narrow the linewidth
and thus improve the accuracy of the measurement [37].

The improvements made in our absorption imaging system throughout my thesis have
made a marked impact2 upon the Ramsey fringes measured on the left of Figure 6.3, as
compared to how they were before [55]. The stability measurements on the right of Figure

1The |1, 0〉 state must be optically pumped into the |2, 2〉 state before imaging, but the imaging light
itself pumps the |2, 0〉 state into the |2, 2〉 state in a short enough time to be ignored.

2Along with a new method of separating the atom clouds by the second-order Zeeman effect. Previously
a two-stage imaging technique was used which introduced more relative atom noise and a small systematic
error into the measurement of the number of atoms in the |1, 0〉 state. For details on the old technique,
see [55].
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Figure 6.2: An example of the absorption images generated from the interferometer. The cloud
on top is in the |2, 0〉 state and the one on the bottom is in the |1, 0〉 state.
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Figure 6.3: Left: Central portion of the Ramsey fringes taken with our atom interferometer.
The detuning from two-photon resonance corresponds to δ in Figure 6.1 (a). Right: Stability
measurements using one beam splitter. The data show a standard deviation over an hour’s opera-
tion of 0.0155 = 1.5% which is not quite at the atomic shot noise limit for a cloud of 5×103 atoms
of 0.0071 = 0.7%. However there are other contributions to the noise apart form the imaging
procedure.

6.3 show how the relative atom number varies over the course of an hour’s operation
with the detuning from two-photon resonance δ held at zero, only using the first beam
splitter. In each run approximately 50% of the atoms have been transferred to the |2, 0〉
state3. In this way some sources of variation, such as a change in the distance between
the beam splitters, are eliminated and so it is a better test of the noise introduced by
the absorption imaging technique. The data show a standard deviation over an hour’s
operation of 0.0155 = 1.5%. The atomic shot noise limit for two clouds, each of 5 × 103

3This is known as a π/2 pulse in the terminology of the Bloch sphere, as it transfers the atoms from the
|1, 0〉 state (which points down) to the 1√

2

`
|1, 0〉+ eiφ |2, 0〉

´
state which rotates in the horizontal plane.
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atoms, is given by

∆
(

N2

N1 +N2

)
=

1
2
√
N

=
1

2
√

5× 103

= 0.0071 or 0.7%

So the images are not quite at the atomic shot noise limit. However there are other
contributions to the noise apart form the imaging procedure, such as fluctuations in the
intensity of the beam splitter, variation in the residual magnetic field after the trap is
turned off, and fluctuations in the detuning from two-photon resonance. Once these other
fluctuations are sorted out, it will be possible to tell whether the imaging system is atomic
shot-noise limited. The eventual aim is that we can test various possibilities for squeezing
the atom beam, thereby reducing the shot-to shot fluctuations and increasing the sensitivity
of the interferometer as a precision measurement tool.



Conclusion and Outlook

‘A lightning flash:
between the forest trees
I have seen water.’

Shiki, Masaoka. (1867-1902)

The results obtained in Chapter 5 clearly demonstrate that atomic shot noise has been
quantitatively measured in cold atom clouds. As it is the dominant noise source in the
regime where the detuning is large, we have achieved atomic shot-noise-limited imaging.
The quantitative agreement with the theoretical model for atomic shot noise was achieved
through binning of the data into larger pixels. This removes the effect of blurring, which
is mainly caused by photon recoil and the diffraction limit of the imaging system. The
binning method has been used before [8] to demonstrate atomic shot noise on a cold atom
cloud. However, in that case much digital filtering was used to achieve clean images, in
contrast to the results of this thesis. This imaging system will enable the investigation of
the quantum statistics in a BEC, but limitations on the size of the BEC available and the
diffraction-limited imaging system used have so far prevented this goal being achieved.

The atomic noise measurements made to obtain this result can conceivably be improved
upon by several methods:

• Using a lens with a larger numerical aperture will improve the diffraction limit of
our system. A larger numerical aperture is achieved with a larger diameter and a
shorter focal length, but the focal length cannot be much less than 30mm due to
the geometry of the setup and the magnification required to image the object onto a
CCD. A good lens would be the achromatic doublet lens AC254-030-B from Thorlabs
[58] which has a focal length of 30mm and a diameter of 25.4mm; it would roughly
halve the size of the smallest detail we can resolve. An achromatic lens is chosen as
these also reduce spherical aberration.

• Increasing the size of the condensates to be imaged. In our system, one way is to
identify and eliminate the loss in transfer between the 3D MOT and the Ioffe coils,
which reduces the atom number by a factor of 100. Another way is to slow down the
radio frequency evaporation of the cloud. The limiting factor here is heat removal
from the Ioffe trap, because if it operates continuously for longer than about 30 s,
runaway resistive heating can damage the trap coils. A more drastic method for
increasing the atom cloud size is to increase the size and power of the 3D MOT
laser beams. Larger MOTs can also be achieved using the dark spot technique where
no repump light illuminates the centre of the MOT [59]. This technique avoids re-
absorption of scattered light from the cooling beam and therefore prevents some
density-limiting and heating effects.

• Fitting the full density distribution functions derived in section 4.3 to the atom
clouds to arrive at a ‘mean value’ for each pixel without resorting to the nearby
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averaging procedure. The fitting routines used in sections 4.3.3.5 and 4.3.4 could
also be improved by including higher order terms in the fit, however including too
many more will make the routine slow to compute. Including the second and third
order terms (depicted in Figure 4.7) would give a reasonable improvement in accuracy.

• Using multiple absorption images from different runs of the experiment and averag-
ing over many clouds. However this method requires good run-to-run experimental
stability to avoid the need for normalisation of each image (as is done in [19]), since
this can introduce systematic error into the measurement of variance.

• Finding and reversing the blurring of the density distribution numerically4. There
are several methods that could be used for this purpose (see [60]), the best being
a semi-blind deconvolution method, in which the blurring we calculate will be the
starting point for a routine which optimises both the image and the blurring function.
However, this method is computationally expensive, and it may introduce unwanted
sources of noise into the data.

A combination of these methods could provide the breakthrough to allow the observation
of shot-noise on Bose-condensed clouds - and therefore allow the further study of quantum
correlations on these condensates.

Chapter 6 described the application of atomic shot-noise-limited absorption imaging
to a precision measurement. Our cold atom interferometer is currently a factor of two
away from atomic shot-noise-limited sensitivity, however as we have demonstrated atomic
shot-noise-limited imaging on the same setup, our imaging technique is most likely not the
cause of the instability. Once the interferometer is stabilised, it could be used to observe
squeezing in our BECs [22], to make precise measurements of the fine structure constant α
[28], the local gravitational field g [31], or to make precise measurements of small rotations
in the setup. Another possible set of experimental realisations are the Ahronov-Bohm and
Ahronov-Casher derivative experiments. These demonstrate that electromagnetic fields al-
low particles to be quantum mechanically scattered by topological defects when no classical
force exists [61]. A particularly simple experiment of this kind which could conceivably be
realised in our atom interferometer is where the arms of the atom interferometer enclose
a charged wire5. However the execution of this experiment would not be a short-term
project as it would involve re-building the vacuum chambers of the 87Rb BEC machine
after insertion of the required wire into the glass cell (in a vacuum sealed way) where the
interferometer operates.

In the short term future, the focus should be clearly on quantitative measurements of
the quantum statistics of Bose-condensed clouds. This provides direct tests of theoretical
models of condensates. Improvements in measurement sensitivity using cold atom inter-
ferometry, made possible by quantum mechanical squeezing, will become detectable. This
will open the door to more precise measurements of the fine structure constant (a test of
quantum electrodynamics), of local gravity, of inertial effects such as rotation, and a step
closer to detecting gravitational waves. Precision measurement is an old and well-crafted
field with many elegant tools. Soon cold atom interferometry, using atomic shot-noise
limited imaging, may become the newest addition.

4In computer imaging terminology, the blurring is described by a ‘point spread function’, a function
like equation (3.22).

5Although a classical force does exist in this setup due to the polarizability of the atoms, its effect
would be minimal compared with the Ahronov-Bohm scattering [62].



Appendix A

Statistical Distributions

A.1 Poisson Distribution

A.1.1 General Properties

The Poisson distribution is a discrete distribution in which the probability of any particular
value x ∈ {0, 1, 2, 3, . . .} occurring is given by

Pr(X = x) =
λxeλ

x!
.

It arises whenever a Binomial distribution with n samples and p chance of success in any
sample is taken in the limit n → ∞, p → 0 while the mean np = λ is held constant. It
also arises when a temporal series of discrete events, which each take an exponentially
distributed time t, are binned into time intervals ∆t and the number n of events in each
bin are counted. The Poisson distribution is approximated by a normal distribution with
mean and variance λ in the limit λ→∞. . For reference, see [63].

The mean and variance are λ:

E(X) =
∞∑
n=0

nPr(X = n)

=
∞∑
n=0

n
λneλ

n!

=
∞∑
n=1

λneλ

(n− 1)!

= λ

∞∑
n=0

λneλ

n!

= λ
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Var(X) =
∞∑
n=0

Pr(X = n) (n− E(X))2

= λ2 +
∞∑
n=0

n (n− λ)
λneλ

n!

= λ2 + λ

∞∑
n=1

(n− λ)
λn−1eλ

(n− 1)!

= λ2 − λ2 +
∞∑
n=0

n
λneλ

n!

=
∞∑
n=1

λneλ

(n− 1)!

= λ

∞∑
n=0

λneλ

n!

= λ

A.2 Approximations to mean and variance

For general functions f(X) of a random variable X we can take a Taylor series to approx-
imate the mean E(f(X)) and variance Var(f(X)), where E(X) = µ and Var(X) = σ2 are
known. Begin with

f(X) = f(μ) + f ′(μ)(X−μ) + ...

=
∞∑
n=0

f ′(µ)
n!

(X − µ)n.

By taking the expected value of both sides to low order we can see that

E(f(X)) ≈ f(µ) zeroth order (A.1)
E(f(X)) ≈ f(µ) + f ′(μ)E(X−μ) + f ′′(μ)E((X−μ)2)

= f(µ) + f ′′(μ)σ2 second order (A.2)

By constructing the variance Var(f(X)) = E
(

(f(X)− E(f(X)))2
)
we see that

Var(f(X)) ≈ E
(
f ′(μ)2(X−μ)2

)
= f ′(μ)2σ2 first order (A.3)

Var(f(X)) ≈ E
((
f ′(μ)(X−μ)− f ′′(μ)σ2 + f ′′(μ)(X − µ)2

)2)
= E

[(
f ′(μ)2(X−μ)2 − f ′′(μ)2σ4 + f ′′(μ)2(X − µ)4 − 2f ′(μ)(X−μ)f ′′(μ)σ2

−2f ′′(μ)2σ2(X − µ)2 + 2f ′(μ)f ′′(μ)(X − µ)3
)2]

= f ′(μ)2σ2 − 3f ′′(μ)2σ4 + 2f ′(μ)f ′′(μ)E
(
(X − µ)3

)
+ f ′′(μ)2E

(
(X − µ)4

)
second order (A.4)

(A.5)
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Figure A.1: Left: Diagram illustrating the nearby averaging procedure used to analyze absorp-
tion images. Each pixel’s ‘mean’ is found as the average of the (2n+ 1)2 pixels around it. Right:
Imagine the pixel of interest is located in the middle of a gradient. What effect will this have on
the averaging? The pixels are labelled in coordinates as pixels away from the yellow one, e.g. the
one in the top right corner is (n, n) and that in the bottom left is (−n,−n).

where E
(
(X − µ)3

)
and E

(
(X − µ)4

)
are higher moments that we may be able to calculate

depending upon the distribution of X. For example if X is a Poisson distribution with mean
λ then a general formula exists1;

E ((X − λ)n) =
(
d

dt

)n
eλ(e

t−t−1)
∣∣∣∣
t=0

so we can calculate E
(
(X − λ)3

)
= λ and E

(
(X − λ)4

)
= λ + 3λ2 and equation (A.4)

becomes

Var(f(X)) ≈ f ′(λ)2λ− 3f ′′(λ)2λ2 + 2f ′(λ)f ′′(λ)E
(
(X − λ)3

)
+ f ′′(λ)2E

(
(X − λ)4

)
= f ′(λ)2λ− 3f ′′(λ)2λ2 + 2f ′(λ)f ′′(λ)λ+ f ′′(λ)2

(
λ+ 3λ2

)
= f ′(λ)2λ+ 2f ′(λ)f ′′(λ)λ+ f ′′(λ)2λ

=
[
f ′(λ) + f ′′(λ)

]2
λ

while the expectation (A.2) is still

E(f(X)) ≈
[
1 + f ′′(λ)

]
λ.

A.3 Variance calculated by nearby averaging

One of the main methods that has been used to find a mean and deviation for each pixel,
from a single image, was to average a square area around the pixel in question to find the
‘mean’ for that pixel (see the left of fig A.3). Here I calculate a simple model for how the
variance as calculated relates to the actual variance of the sampled populations.

Say we take (2n+ 1)2 = N samples Xi from the same distribution X. The average we

1This can be derived using moment generating functions, MX−µ(t) = E(et(X−µ)). Then each ‘moment’
E ((X − µ)n) may be calculated by E ((X − µ)n) = d

dt
MX−µ(t)|t=0.
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calculate from these samples will be denoted

X̄ =
1
N

N∑
i=1

Xi.

The variance we calculate will be

E
(
(Xi − X̄)2

)
= E

(
X2
i − 2XiX̄ + X̄2

)
= E

(
X2
i

)
− 2E

(
XiX̄

)
+ E

(
X̄2
)
. (A.6)

Now

E
(
XiX̄

)
=

1
N

N∑
j=1

E (XiXj)

=
1
N

E (X2
)

+
N∑
j=1

i 6=j

E (Xi)E (Xj)


=

1
N

E
(
X2
)

+
N − 1
N

E (X)2

=
1
N

Var (X) + E (X)2

Also

E
(
X̄2
)

= Var
(
X̄
)

+ E
(
X̄
)2

=
1
N

Var (X) + E (X)2

while
E
(
X2
i

)
= E

(
X2
)
.

Putting it all together;

E
(
(Xi − X̄)2

)
= E

(
X2
i

)
− 2E

(
XiX̄

)
+ E

(
X̄2
)

= E
(
X2
)

+ (−2 + 1)
(

1
N

Var (X) + E (X)2

)
=

N − 1
N

Var (X)

which is in fact just the standard way to estimate the population variance Var (X) from
the sample variance E

(
(Xi − X̄)2

)
.

Assume now that we are on the side of a hill, i.e. each Xij is a random variable with
mean increasing as we go up the hill (see the right side of Figure (A.3)). Say, for example,
that E(Xij) = µ + jν where µ = E(X00) is the mean of the pixel of interest, and j is the
vertical coordinate from the pixel of interest. Also, assume the variance also scales in this
fashion, i.e. Var(Xij) = σ2 +jξ where σ2 = Var(X00) is the variance of the pixel of interest
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The variance we calculate will be

E
(
(X00 − X̄)2

)
= E

(
X2

00 − 2X00X̄ + X̄2
)

= E
(
X2

00

)
− 2E

(
X00X̄

)
+ E

(
X̄2
)
. (A.7)

Now
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i2+j2 6=0

E (X00)E (Xij)



=
1
N

σ2 + µ2 +
n∑
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i2+j2 6=0

µ (µ+ jν)

 (A.8)
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(A.9)

=
σ2

N
+ µ2

while

E
(
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00
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= Var (X00) + E (X00)2

= σ2 + µ2

Putting it all together;
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00
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which is the same result we got before. This is because the sums on lines (A.8) and (A.9)
reduced to their trivial values by cancellation of the changes either side of the pixel of
interest. This will not occur if the distributions either side of the pixel of interest are
asymmetrical, for instance at the top of a hill, or over a region where a slope flattens out.
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