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Stopping by Woods on a Snowy Evening

Whose woods these are I think I know.
His house is in the village, though;
He will not see me stopping here
To watch his woods fill up with snow.

My little horse must think it queer
To stop without a farmhouse near
Between the woods and frozen lake
The darkest evening of the year.

He gives his harness bells a shake
To ask if there is some mistake.
The only other sound’s the sweep
Of easy wind and downy flake.

The woods are lovely, dark, and deep,
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.

Robert L. Frost (1874–1963)
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Abstract

This thesis describes recent advances in ultra-cold atom interferometry. A com-
mon theme in the work described here is that the experiments are conducted on
a Bose-Einstein condensate in an optical waveguide. This optical potential confines
the atoms against gravity in the vertical dimension, guiding them to freely propa-
gate along one horizontal dimension. Being supported against gravity enables long
expansion times of hundreds of milliseconds, which facilitates techniques such as
delta-kick cooling.

There are two main advantages of using ultra-cold atoms, rather than simply cold
atoms, as a source for interferometry. Firstly, the coherence of an ensemble of atoms
(as measured by either coherence length or coherence time) increases with a reduc-
tion in temperature. This means that a larger signal-to-noise may be obtained for a
greater perturbation to ideal conditions, such as imperfect beam alignment, vibra-
tions, intensity fluctuations etc. Conversely, this also means that such perturbations
must be better understood so as to remove their systematic shift from a measurement
of a quantity of interest. The second advantage to using an ultra-cold source cloud
is its small size and small momentum width, as compared with a thermal source.
Their small positional width means that clouds separated by only a small amount in
momenta can easily be spatially separated and separately counted without the need
for (magnetic) state labelling. Their small momentum width (and thus low spatial
dispersion) means that better mode-matching is possible at the end of the interferom-
eter, and that less-imperfect beam-splitter pulses are able to be used over the whole
cloud.

The beamsplitters themselves would ideally impart a large momentum splitting be-
tween the interfering states as the signal of the interferometer is proportional to this
splitting. The effective use of such a large momentum splitting, however, requires
both an even narrower momentum width source and a system free of vibrations to at
least a certain level. Otherwise such confounding factors can prevent any useful sig-
nal from being measured in such a device. Three such techniques were investigated
in this thesis: reflection from a repulsive light potential barrier, Bragg transitions from
an optical lattice (which are effectively bouncing atoms off a moving grating), and
Bloch-acceleration by loading the atoms into such an optical lattice and then acceler-
ating the combined system. It is found that a combination of both Bragg and Bloch
provides the most promising route to truly large momentum transfer in a system
which is sensitive only to acceleration. Lastly, large-momentum transfer techniques
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can be used to effectively increase the way in which the output signal scales with
time, creating interferometers which generate the same sensitivity faster (increasing
the bandwidth of a sensor), or generate a much better sensitivity in the same time.

The atom chosen for use in such a system depends largely upon what is easy to
condense in a given lab, but it also depends upon which knobs one would like to be
able to play with. A BEC of Rubidium-87 is comparatively easy to produce thanks
to favourable collisional properties and the availability of diode lasers at the cor-
rect wavelength. However if one would like more control over the properties of the
condensed cloud, including its collisional self-interaction strength, one must move
to a different species. Conveniently also present in natural-abundance Rubidium
sources, the collisional properties of Rubidium-85 can be modified by applying an
external magnetic field, at an easy-to-experimentally-reach value of between 150-
170G. Inconveniently, it is difficult (although not impossible) to condense by itself,
so a sympathetic cooling technique in which 87Rb is used as an expendable coolant
to acquire a cold sample of 85Rb is used in this thesis. This technique works sur-
prisingly well thanks to yet more fortunate coincidences of the atomic properties of
each atom. One benefit of requiring cold 87Rb to produce cold 85Rb is that it is easy
to then produce a condensate of each species simultaneously in the same trap. It
turns out that this combination of atomic isotopes is ideal for an interferometric test
of the weak equivalence principle, one of the underpinnings of General Relativity. In
fact, space missions are currently being proposed and funded on this combination of
isotopes. This thesis also presents the results of the first Bose-condensed version of
such a dual-species interferometer. As could well be expected, inter-atomic interac-
tions play a large role in determining the output of such an interferometer and much
further study is required before such a system could be deployed in space.

By ensuring there is no 87Rb left after condensation, we have created a pure 85Rb BEC.
Using this we can now explore how the inter-atomic interactions affect the phase shift
of a condensed atom interferometer, as we have complete control over the interaction
strength. Two especially interesting cases are the following. Firstly, a condensate
with no inter-particle interactions should not exhibit this effect at all, allowing a
clean comparison point. Secondly, with a small attractive interaction between atoms,
it is possible to create a self-trapped cloud of atoms which propagates dispersion-
lessly, even in the presence of a repulsive trapping potential. This cloud is known
as a soliton, and it is predicted to have even more interesting quantum mechanical
properties. For example it is predicted that by colliding two such solitons, an en-
tangled state can be generated. Our results indicate that the dispersionless character
of the soliton out-performs all other interaction strengths in an atom interferometer,
including even the non-interacting cloud.

Throughout this thesis I have gained a better understanding of how ultra-cold atom
interferometers work and what can be done to improve and extend their capabilities
into new and exciting directions, and hopefully after reading this thesis, you will too.
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Chapter 1

Introduction

Light interferometry has been used for just over 130 years to investigate the prop-
erties of the world around us in finer detail [169, 170]. Since its inception, inter-
ferometry has blossomed into a wide ranging field using not only light, but also
electrons [224], neutrons [142, 102, 225, 101, 196, 215], neutral atoms [136, 58, 22],
Boes-Einstein condensates [15], ions [116], superfluid 3He and 4He [205, 218, 122, 131]
and larger molecules [115]. Neutral atoms in particular are a versatile tool for inter-
ferometry as they are sensitive to gravity and other accelerations through their mass,
to magnetic fields through the Zeeman shift and their magnetic dipole moment, and
sensitive to electric fields through their electric polarisability.

1.1 What Is An Atom Interferometer?

An atom interferometer takes a source of atoms, which could be a cold cloud or a
beam of atoms, and splits it along two (or more1) trajectories in space-time. These
two trajectories experience different environments, and they are then brought back
together and compared, to see the difference in phase accumulated between the two
paths. For example, in a Mach-Zehnder configuration [Fig. 1.1 (a)], some of the atoms
are initially diffracted to a faster moving state. After a time T, the speed of the two
clouds of atoms is swapped, and after a further time T all the atoms are overlap-
ping again. At this point the atoms are diffracted once again and hence interferred.
The fractional number in each of the two output clouds carries the information we
require. If, for example, we vary the position of the last diffraction grating, we will
change the additional phase φ which it applies. By plotting the fraction of atoms
in one of the two output states we will get a cosinusoidal graph which looks like
Fig. 1.1 (b), and the offset of this cosine from zero is the phase difference Φ between
what was accumulated along each of the two paths. This relative phase is used to

1In general it can of course compare the relative phase along many different paths as in Talbot-Lau
interferometry, for example.

1



2 Introduction

Figure 1.1: (a) Space-time diagram for a Mach-Zehnder atom interferometer. First,
the initial cloud of atoms is split by a laser pulse between two momenta, zero and two
photon recoils. A time T later, a second laser pulse swaps the momenta of the two
clouds of atoms. After an additional time T the two clouds overlap once again and
are recombined and interfered by a final laser pulse. The clouds are then allowed
to separate before an image is taken to count how many atoms are in each final
momentum state. (b) An example interference fringe from an atom interferometer,
which will be shown again as Fig 7.6. As the phase φ of the last beam-spliter is varied,
the fraction of atoms in the |0h̄k〉 state traces out a cosine fringe. Also indicated
are the important parameters extracted from the fit, the fringe visibility V and the
interferometric phase Φ. At the bottom the raw absorption images after each run are

shown.

infer a measurement of a quantity of interest, for example, the value of local gravity
g, the strength of the local magnetic field B, or the rotation rate of the earth Ωe.

Applications for atom interferometers include (but are not limited to) inertial mea-
surement, measurement of electric and magnetic fields, measurement of time and
measurements of light fields and surfaces. With small changes to the interferometric
sequence or direction, atom interferometers can also measure gradients and higher
derivatives of all of these quantities.

Gravimetry
The phase of an interferometer with space-time area A =

∫ tfinish
tstart

∆x dt, con-
structed with an atom of mass m is sensitive to local gravity g through the
relation (to be presented in Chapter 3)

Φ =
m
h̄

∫ tfinish

tstart

∆x dt · g (1.1)

=
m
h̄
A · g (1.2)
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Measurements of local gravity g [124, 187, 7] can be used to look at tidal fluctu-
ations, earthquakes, plate tectonics and other geophysical phenomena. Maps of
the spatial variation in local gravity g(x, y), the gravity gradient dg(x,y)

dz [222, 221]

or even the gravity curvature d2g(x,y)
dz2 [200] can be used for mineral exploration,

groundwater mapping, navigation and climate change modelling. They can
also be used in searching for bunkers or tunnels buried underground. Another
use is to compare the gravitational acceleration of two different atoms in or-
der to test the weak equivalence principle, and this will be discussed further in
Chapter 8. Careful differential gravimetry with calibrated source masses can be
used to measure Newton’s gravitational constant G to higher precision [201].

Magnetometry
The magnetic sensitivity of an atom interferometer can be used to create spa-
tial maps of the naturally occurring magnetic field B(r) and its spatial deriva-
tives [244, 18], which could again have applications in mineral exploration and
geodesy. The magnetic sensitivity is derived from the Zeeman shift

U = µ · B (1.3)

where µ is the magnetic dipole moment of the atoms. An atom interferometer
will detect a difference in the Zeeman shift between two trajectories according
to

Φ =
m
h̄

∫ tfinish

tstart

∆U dt. (1.4)

From Eq. (1.3), the atoms will experience an acceleration due to a spatial gradi-
ent in magnetic field, according to

amag = − 1
m

µ · ∇B (1.5)

and this can be detected by an inertially sensitive interferometer. Magnetically
sensitive atom interferometers could also be used to map out the magnetic
properties of a nearby surface [179], e.g. a new magnetic material or new design
of atom chip. Atom interferometers can be designed to be sensitive to only
certain frequencies of oscilliatory magnetic fields [35] by carefully utilising time
symmetry in the design of the sequence.

Inertial measurements
Atom interferometers can sense both linear accelerations a [164] and rotations
Ω [19], which are a vital source of information for dead-reckoning navigation
systems. Linear accelerations are detected according to Equation (1.1) by re-
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placing g with a. Rotations are sensed according to the Sagnac Phase shift

Φ =
2m
h̄

Ω×A (1.6)

where A is the vector-area enclosed by the atom interferometer, and Ω is the
rotation being detected. As atom interferometers are highly sensitive to vi-
brations at very low frequencies, this makes them ideal tool for the search for
gravity waves in this frequency range [100]. These concepts will be developed
in Chapter 3.

Light
The change in potential V felt by the atoms due to the Stark shift of a beam
of light can be measured by its effect on the phase of the atoms which pass
through it, by comparing with other atoms with a different Stark shift, accord-
ing to the usual relation

Φ =
m
h̄

∫ tfinish

tstart

∆Vdt. (1.7)

It is also possible to perform a precision measurement of the recoil frequency,
ωr = h̄k2

2m . This allows a precision measurement of the fine-structure constant
α = e2

4πε0 h̄c ≈ 1
137 as the other factors are already known to high precision [32].

1.2 Practical considerations

The field of atom interferometry began in 1991 with thermal beams of atoms be-
ing split using nano-fabricated diffraction gratings [136], double slits [41], and 1-
photon [197] or 2-photon [134] transitions. By the year 2000, atom interferometry
had surpassed other techniques for measuring rotations [107]. The following year,
atom interferometers had equalled the gravitational sensitivity and long-term abso-
lute accuracy of its nearest competitor, the falling corner cube [187]. This record
stood unchallenged for more than a decade, and it was only in 2013 that another
atom interferometer beat it by a factor of two [124].

What stands in the way of further progress? To answer this question we must ex-
amine the factors which determine the precision of an atom interferometer. In the
specific case of a Mach-Zehnder atom interferometer, the smallest achievable accel-
eration sensitivity ∆a in a single run goes as
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∆a =
1√

NkeffT2V
(1.8)

where N is the number of atoms used in the run, k is the momentum separation
between the two trajectories along the direction in which we wish t measure the
acceleration a, T is the interferometer time (2T is the time from the beginning to the
end of the interferometer) and V is the fringe visibility, the amplitude of a sinusoidal
fit to the interference fringe, which is between 0 and 1. Let us examine each of the
parts of this expression in turn.

Atom number N
The appearance of

√
N on the denominator of Eq. (1.8) is a result of simple

binomial statistics. If a coin is flipped N times, the expected fraction of heads
will be 50%. But the standard deviation around this value will go as 1/

√
N.

The same is true for atoms which can be in one of two output ports of an
interferometer, and here it is known as the quantum projection-noise limit. This
limit can be surpassed, tending towards 1/N, using quantum entanglement in
condensed sources [77, 179, 23] but as yet this is impractical for a large enough
number of atoms to be metrologically useful. This scaling with the square root
of the number of atoms means that to produce a device which is an order of
magnitude more sensitive, the number of atoms needs to be increased by two
orders of magnitude.

Momentum Transfer keff
The momentum keff transferred to the atoms by the atomic beam-splitter is
equivalent to the momentum separation between the two trajectories which
make up the interferometer. The signal in an interferometer can therefore be
increased by increasing this momentum splitting. One way to do this is simply
using a repulsive barrier in direct analogy to the optical beamsplitter, as will
be discussed in Sections 2.7.2 and 5.5. Another way is to impart many photon-
recoils of momentum to the atoms using an optical lattice, which is a key result
of this thesis and will be discussed in Chapter 6. Of course in order to achieve
such large momentum transfer it is necessary to have a very low-dispersion
source [233] and so we study two approaches to this problem. In Chapter 6 we
use delta-kick cooling to collimate the wavefront of our expanding condensate
before applying the interferometer, and in Chapter 7 we will use the inter-
atomic interactions to cancel out the spatial dispersion and create a soliton as
the source cloud for our atom interferometer.

Interferometer Time T
In the example of a Mach-Zehnder interferometer, the T2 in the denominator of
Eq. (1.8) is as a result of the space-time area A in that particular interferometer
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going as ∼ keffT2 [c.f. Eq. (1.2)], and the theory behind this will be explored
in more detail in Chapter 3. This scaling means that if the interferometer time
can be increased two-fold, the uncertainty in acceleration can be decreased
four-fold. We will also show theoretically in Chapter 3 and experimentally in
Chapter 6 that by using large momentum transfer, this scaling can be increased
to T3 or even higher powers of T.

Fringe visibility V
The fringe visibility V , shown in Fig. 1.1 (b), also appears in the denominator
of Eq. (1.8). It is the amplitude of a sinusoidal fit to the interference fringe. If
V = 1 it means that there is perfect coherence and all the atoms contributed to
the interferometer signal. If V < 1 it means that something in the interferometer
did not go perfectly, for example some of the atoms did not interfere, some of
the atoms interfered with a different phase offset, or some noise has crept into
the detection process. If V = 0, it means that the interferometer is unable to
perform any measurement of the quantity of interest.

However these are not the only factors that need to be taken into account. By defi-
nition, a precise accelerometer is sensitive to very small accelerations. These may be
from the signal of interest, say local gravity g, or they may be from some unwanted
mechanical vibrations of the room or the apparatus. Therefore, a common restric-
tion on the acceleration sensitivity of an atom interferometer is the level to which it
can be isolated from background vibrations. These must be well below the desired
level of acceleration sensitivity for a good measurement, and in fact are the main
limiting factor in current state-of-the-art acceleration measurements with atom inter-
ferometry. Phase noise on the diffraction grating will couple in exactly the same as
a vibration and so the relative phase of two laser beams generating the diffraction
grating must be controlled precisely as well.

Dispersion of the interferometric wave packet can reduce the efficiency of diffrac-
tion pulses [233]. Dispersion throughout the interferometer will also cause phase
inhomogeneities across the cloud, which will lower the overall fringe visibility when
averaged at the end of the interferometer. For these reasons interferometers are be-
ing constructed which rely upon colder and colder sources, which have a narrower
momentum width and consequently less spatial dispersion. Thermal sources are,
roughly speaking, in the range of a few mili-Kelvin to hundreds of nano-Kelvin, and
consequently have a momentum width between one and a hundred photon recoils2.
The colder the thermal source is to begin with, the lower the loss involved in selecting
a velocity class to use for the interferometer. This is analogous to using a light bulb
as a source for a light interferometer. The light can be filtered to provide a suitable
source for an interferometer, but it will still have a much shorter coherence length
and larger angular divergence than a laser beam. Similarly, a cold but incoherent

2These numbers are based upon 87Rb and using the D2 line at 780nm, and will vary depending
upon the atom or transition chosen.



§1.2 Practical considerations 7

thermal source of atoms can be filtered (velocity selected) to form a source for in-
terferometry. However this will also have a short coherence length and large spatial
divergence as compared with a coherent atomic source, a Bose-Einstein Condensate.

Indistinguishable bosons will condense if they fulfil the phase-space density crite-
ria [17, 188]

ρλ3
dB & 2.6 (1.9)

for 3D density ρ, thermal de Broglie wavelength λdB =
√

2πh̄2

mkBT , temperature T, and
Boltzmann’s constant kB. This regime is roughly described by particles which are
separated by less than λdB, so that inter-particle interactions become important. A
BEC will have a momentum width on the order of 0.01-0.1 photon recoils, which in
the absense of inter-particle interactions is determined by the momentum width of
the ground state of the trap in which it is held. Repulsive interactions will tend to
make the condensate larger (in-trap) and hence lower the momentum width. How-
ever, once the condensate is allowed to expand, it can convert the energy stored in the
interparticle interactions into kinetic energy, and can become broader in momentum
width [5]. In addition, condensed atoms are now phase-coherent, which allows the
possibility of multiple particles interfering with each other.

To explore the effect of both temperature and condensation on an atom interferome-
ter we compared three source clouds in the same interferometric sequence; a thermal
cloud cooled to 1.3 µK, a thermal cloud cooled to 75 nK, and a Bose-Einstein Conden-
sate. In Figure 1.2 the fringe visibility V is shown for a Mach-Zehnder interferometer
constructed in an optical waveguide in our setup. Each source cloud had a small
section selected from it with the same axial momentum width, so that the differences
between them will occur because of differences in the transverse momentum width
and phase coherence between across multiple atoms in the condensate. These results
are published in Ref. [114]. It is clear that the interference is more robust against
small mode-mismatching in the output states from the condensed source, as it has a
higher visibility V than the two thermal source clouds.

In analogy to reducing the dispersion of a light beam by collimating it with a lens,
the dispersion of a matter-wave can be collimated by briefly applying a trapping
potential, and this is known as delta-kick cooling. Section 6.4 describes our imple-
mentation of this process and shows how drastic the improvement in fringe visibility
is in our atom interferometer. This process can only fractionally reduce the mo-
mentum width of a given source cloud, so the colder you start, the colder you get.
Another advantage of BEC is that its density can be high enough to take advan-
tage of inter-particle interactions. A BEC will follow a Schrödinger-like equation, the
Gross-Pitaevski Equation
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Figure 1.2: This figure shows the effect of transverse temperature and condensation
on coherence. Each source cloud has been velocity selected to be the same momen-

tum width along the axis of the interferometer. Published in Ref. [114].

−ih̄
d
dt

Ψ =
h̄2

2m
∇Ψ + V(x)Ψ + U |Ψ|2 Ψ (1.10)

where U = 8πa
h̄2 governs the strength of the interactions, and a is the s−wave scat-

tering length of the atoms. If U is positive, the interactions are repulsive, and if U
is negative the interactions are attractive. The influence of repulsive interactions on
an atom interferometer have been studied previously [5, 62]. In Chapter 7 I will use
an attractive inter-particle interaction to cancel out the Heisenberg-limited dispersion
of a BEC, creating a soliton. I will then show that this source cloud maximises the
visibility V of the interferometer among other choices of the inter-particle interaction
strength.

1.3 Free vs. Trapped atom interferometry

State-of-the-art atom interferometers used in precision measurement of time, rota-
tion and gravity currently perform an interferometer on the atoms while they are in
free-fall in order to decouple them as much as possible from the environment. This
is because it requires fewer parts to be vibrationally isolated to such a high level. For
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example, in the case of a gravimeter, it only requires one mirror to be well isolated
from background vibrations. On the other hand, this restricts the maximum inter-
ferometer time and hence the signal of an atom interferometer by the vertical height
of the vacuum system, according to the time it takes to fall a certain distance under
gravity, h = 1

2 gt2. This means that a vacuum system 10 m tall can accommodate a
fall time of just under 1.5 s, which can be doubled if the atoms are launched from
the bottom instead of being dropped from the top. These systems can quickly be-
come unwieldy if a portable measurement device is the desired outcome, and this
has led to interest in trapped and guided atom interferometers which can perform
such measurements with a more compact setup. The disadvantage is that the entire
guiding potential must also be isolated from environmental vibrations and noise so
as to not disturb the signal we are trying to measure. In principle this is possible but
has proven difficult in practice. Here I demonstrate an arrangement for horizontal
acceleration sensitivity by suspending the atoms in a horizontal far-detuned optical
dipole trap, which we term the optical waveguide. In principle this should allow
long time interferometry in that direction, although in practice long times have not
yet been achieved in this configuration. In the future a defined axis sensor could be
built by combining many of these, aligned along each axis to measure accelerations
and rotations in each direction simultaneously.

1.4 Thesis Outline

Part I of this thesis introduces the concepts, techniques and experimental details
which will be required for understanding the main results of this thesis. Chapter 2
refreshes the theory of the two-level atom and shows how it underpins many of
our techniques in manipulating atoms with the use of light. Chapter 3 outlines a
geometric approach to understanding the primary measure at the conclusion of an
interferometer, the phase difference accumulated between the two paths travelled by
the atoms. Chapter 4 introduces the experimental apparatus in which all the exper-
iments are performed and outlines the steps to achieve Bose-Einstein Condensation
of either or both of the naturally abundant isotopes of rubidium. This forms the
starting point for condensed-atom interferometry.

Part II comprises the main results of this thesis. Chapter 5 presents the first incarna-
tion of optically-guided atom interferometry on 87Rb. In this chapter I also demon-
strate an entirely novel kind of ‘triangle’ interferometer incorporating a blue-detuned
barrier as an atom-optic mirror, to bring the two paths back together again. Chapter 6
presents a new design of interferometer which achieves both the largest momentum
separation between the two interfering paths in an acceleration-measuring interfer-
ometer to date, and a scaling law in interferometric acceleration sensitivity which
scales as the cube of the interferometer time, bettering the usual quadratic relation.
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Chapter 7 shows the effect on both the phase and visibility of an interferometer, of
being able to vary the scattering length (and thus the collisional properties) of the
interfering atoms. These experiments are performed through the use of an easily
accessible Feshbach resonance in 85Rb. Surprisingly, the highest visibility is achieved
not when the interactions are turned off, but when they are tuned to be attractive,
so as to produce a cloud of constant phase-space density - a matter-wave soliton.
Finally, Chapter 8 experimentally investigates the simultaneous operation of an in-
terferometer on overlapping condensates of both 87Rb and 85Rb. Such a technique is
proposed for space missions to test the weak equivalence principle, i.e. the principle
that objects of different mass will accelerate at the same rate in a given gravitational
field, in the absence of other effects such as air resistance.
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Chapter 2

Two level atoms

The simplest model for interactions between atoms and light is the two-level atom.
This chapter will derive some common two-level atom results and then show several
examples of how they apply when manipulating atoms with light. These examples
include Rabi flopping, the dipole force and how it is used to create conservative
potentials for the atoms, the scattering force and how it is used in a MOT, and two-
photon transitions such as Bragg scattering of the atoms. Some of these examples
form the basis of techniques used in the rest of this thesis.

To begin we will derive the optical Bloch equations for a two-level system. This form
has the benefit of a readily visualisable mental picture of what is going on, which is
known as the Bloch sphere.

2.1 Hamiltonian

Define the Rabi frequency Ω by the applied electric field times the electric dipole
moment of the transition between the ground |g〉 and excited |e〉 state

Ω =
d · E

h̄
(2.1)

=
−e
h̄

E · 〈e |r| g〉 (2.2)

Start with the following hamiltonian

Ĥ =
h̄ω0

2
(|e〉 〈e| − |g〉 〈g|) + h̄ω

2
(|g〉 〈g| − |e〉 〈e|) + h̄Ω cos(ωt + φ) (|g〉 〈e|+ |e〉 〈g|)

(2.3)
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where ω0 is the resonant frequency of the atom, and ω is the frequency of the photon.
This can be written in matrix notation as

Ĥ =
h̄ω0

2

(
1 0
0 −1

)
︸ ︷︷ ︸

atom energy

+
h̄ω

2

( −1 0
0 1

)
︸ ︷︷ ︸

light energy

+ h̄Ω cos(ωt + φ)

(
0 1
1 0

)
︸ ︷︷ ︸

interaction

(2.4)

Transforming into the rotating frame which rotates with angular frequency ω, and
averaging over many periods of the fast rotating terms which have an angular fre-
quency of 2ω gives 1

Ĥ =
h̄ω0

2

(
1 0
0 −1

)
︸ ︷︷ ︸

atom energy

+
h̄ω

2

( −1 0
0 1

)
︸ ︷︷ ︸

light energy

+
h̄Ω
2

(
0 eiφ

e−iφ 0

)
︸ ︷︷ ︸

interaction

(2.5)

Defining the detuning between the resonant frequency and the applied frequency as
∆ = ω0 −ω we have

Ĥ =
h̄
2

(
∆ Ωeiφ

Ωe−iφ −∆

)
(2.6)

We can write this in terms of a vector of Pauli matrices2 ~σ ≡ {σ̂x, σ̂y, σ̂z} as

Ĥ =
h̄
2

(
~W.~σ

)
(2.7)

where the Rabi vector is ~W = {Ω cos φ,−Ω sin φ, ∆}

1This is known as the rotating wave approximation
2The Pauli matricies are given by σx =

( 0 1
1 0
)
, σy =

(
0 −i
i 0

)
and σz =

( 1 0
0 −1

)
. All 2× 2 matrices A can

be written in the form A = 1
2 (cI +~v.~σ) because the Pauli matrices, together with the identity matrix,

form an orthogonal basis set. To find the coefficients one can use c = Tr{A} and ~v = Tr{~σA}.
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Figure 2.1: The Bloch sphere
picture. The Bloch vector ~x,
which describes the quantum
state of the two-level sys-
tem, rotates according to Eq.
(2.15) around the Rabi vector
~W = {Ω cos φ,−Ω sin φ, ∆}, it-
self describing the atom-light

interaction.

|1 + i |2√
2

|1 + |2√
2

2.2 Coherent Evolution

The density matrix ρ̂ evolves coherently according to the von Neumann equation,

ih̄
dρ̂

dt
=
[
Ĥ, ρ̂

]
(2.8)

in the absence of any spontaneous decay from the excited to the ground state.

We can write the density matrix in terms of pauli matrices as

ρ̂ =
1
2
(I +~x.~σ) (2.9)

and we can call ~x = {x, y, z} the Bloch vector. For a pure state |~x| = 1 while for a
mixed state |~x| < 1. So the commutator

[
Ĥ, ρ̂

]
is given by

[
Ĥ, ρ̂

]
=

h̄
4

(
~W.~σ

)
(I +~x.~σ)− (I +~x.~σ)

h̄
4

(
~W.~σ

)
(2.10)

=
h̄
4

(
~W.~σ

)
(~x.~σ)− h̄

4
(~x.~σ)

(
~W.~σ

)
(2.11)

=
ih̄
2

(
~W ×~x

)
.~σ (2.12)

where on the last line we have used the identity (~a.~σ)
(
~b.~σ
)
=
((

~a.~b
)

I + i
(
~a×~b

)
.~σ
)

and Eq. (2.8) becomes



18 Two level atoms

ih̄
d
dt

(I +~x.~σ) = ih̄
(
~W ×~x

)
.~σ (2.13)

d~x
dt

.~σ =
(
~W ×~x

)
.~σ (2.14)

d~x
dt

= ~W ×~x (2.15)

which is the vector differential equation describing the Bloch vector ~x rotating around
the Rabi vector ~W in three dimensions, at a rate

∣∣∣~W∣∣∣ = W rad/s−1. On the last line
we were able to ‘undo’ the dot product by equating the coefficient of each orthogonal
Pauli matrix. For a given initial Bloch vector ~x0, and constant Rabi vector ~W, Eq. (2.15)
has the solution

~x(t) = cos(Wt)~x0 + sin(Wt) (~w×~x0) + [1− cos(Wt)] (~w.~x0) ~w (2.16)

where we have defined the unit Rabi vector ~w = ~W/W. Let us now simplify to
the case where the initial state is the ground state, i.e. the initial Bloch vector is
~x0 = {0, 0,−1}. In this case, the z-projection of the Bloch vector (which is the fraction
in the excited state minus the fraction in the ground state) is given by

z(t) = ~ez.~x(t) (2.17)

= cos(Wt) (~ez.~x0) + sin(Wt) (~x0 ×~ez) .~w + [1− cos(Wt)] (~w.~x0) (~w.~ez) (2.18)

= − cos(Wt)− ∆2

W2 [1− cos(Wt)] (2.19)

and so the probability that the atom is in the excited state is given by ρee = 〈e| ρ̂ |e〉 is
given by

ρee(t) =
1 + z(t)

2
(2.20)

=
1
2

(
1− ∆2

W2

)
[1− cos(Wt)] (2.21)

=
Ω2

W2 sin2
(

Wt
2

)
(2.22)

while the probability of the atom being in the ground state is of course given by

ρgg(t) = 1− ρee(t). (2.23)
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2.3 Pulses

For an initial ground state ~x = {0, 0,−1}, a π pulse is defined (for a pulse of constant
intensity light for a time τ) by Wτ = π, so that ρee is maximised, i.e. as much
population has been transferred into the excited state as possible. Ideally this pulse
is on-resonant and so ∆ = 0 and the efficiency of the transfer is 100%. In the more
general case of arbitrary pulse shapes (for example a gaussian pulse which minimises
its Fourier frequency width for a given pulse duration) the π pulse is defined by∫

W(t)dt = π (2.24)

which also maximises transfer between the ground and excited states. For a resonant
π pulse and an arbitrary initial state, the component in the ground and excited state
are swapped (while maintaining coherence) and so this pulse is also called a mirror
pulse.

A π/2 pulse is defined similarly by
∫

W(τ)dt = π/2. If the π/2 pulse is resonant and
all the atoms are in either the ground or excited state to begin with, then afterwards
the atoms will be equally distributed between |g〉 and |e〉. For this reason this pulse
is also known as a beam-splitter pulse.

2.4 Coherent Evolution with Decay

Including spontaneous emission (at a rate Γ) in Eq. (2.8) we arrive at the master
equation

ih̄
dρ̂

dt
=
[
Ĥ, ρ̂

]
+ ih̄ΓD [σ̂−] ρ̂ (2.25)

where σ̂− = 1
2

(
σ̂x − iσ̂y

)
is the decay operator |g〉 〈e| and the decoherence superop-

erator D is given by

D [ĉ] ρ̂ = ĉρ̂ĉ† − 1
2

(
ĉ† ĉρ̂ + ρ̂ĉ† ĉ

)
(2.26)

so that

D [σ̂−] ρ̂ = −1
2
(
xσ̂x + yσ̂y

)
− (1 + z) σ̂z (2.27)
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and

d~x
dt

= ~W ×~x− Γ
2

 x
y

2 + 2z

 (2.28)

which can be solved analytically for constant ~W by rewriting it as a matrix equation:

d~x
dt

= A~x +~b (2.29)

for A =

 − Γ
2 −∆ −Ω sin φ

∆ − Γ
2 Ω cos φ

Ω sin φ −Ω cos φ −Γ

 and ~b =

 0
0
−Γ

 (2.30)

which has the solution

~x(t) =
∫ t

0
eA(t−s) ds.~b + eAt.~x(0) (2.31)

which is unfortunately not particularly illuminating when written out in full.

2.5 Steady State

Let us now look at the steady-state solution when d~x
dt = 0, which can be written as

the matrix equation

A~x = −~b (2.32)

and upon solving for ~x we find

~x = 1
1+δ2+I


√

2I (sin φ− δ cos φ)√
2I (cos φ + δ sin φ)
−(1 + δ2)

 (2.33)

for unitless detunings and intensities

δ =
2∆
Γ

, I =
2Ω2

Γ2 =
I

Isat
(2.34)
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2.6 Forces on the atoms

Adopt the Hamiltonian including kinetic energy:

Ĥ =
p2

2m
+ ĤA + ĤI (2.35)

(2.36)

where the interaction Hamiltonian ĤI = h̄Ω cos(wt− k.r + φ) (|g〉 〈e|+ |e〉 〈g|) is the
coupling term. The force on the atom is now given by

F =
d
dt
〈p̂〉 (2.37)

=
i
h̄
〈[
Ĥ, p̂

]〉
(2.38)

= −
〈
∇ĤI

〉
(2.39)

Now assuming the positional dependence is not in the atom’s internal energy or the
photon’s energy, it can only be in the coupling term, in the electric field strength.

F = −
〈
∇ĤI

〉
(2.40)

= −h̄ 〈∇ (Ωσ̂x cos(wt− k.r + φ))〉 (2.41)

= −h̄ 〈σ̂x [(∇Ω) cos(wt− k.r + φ) + Ω∇ cos(wt− k.r + φ)]〉 (2.42)

= −h̄ 〈σ̂x [(∇Ω) cos(wt− k.r + φ) + Ω sin(wt− k.r + φ)∇ (k.r)]〉 (2.43)

= −h̄ 〈σ̂x [(∇Ω) cos(wt− k.r + φ) + kΩ sin(wt− k.r + φ)]〉 (2.44)

which can be written in the frame rotating at speed ω (and with the rotating wave
approximation) as

F = −h̄
〈
σ̂x [∇Ω cos φ + kΩ sin φ] + σ̂y [−∇Ω sin φ + kΩ cos φ]

〉
(2.45)

= − h̄
2
~x.~y for ~y =

 (∇Ω) cos φ + kΩ sin φ

−(∇Ω) sin φ + kΩ cos φ

0

 (2.46)

Using the steady state solution for ~x in Eq. (2.33) we find

F =
h̄kΓ

2
I

1 + δ2 + I︸ ︷︷ ︸
Scattering Force

+
h̄∆
2

∇I
1 + δ2 + I︸ ︷︷ ︸

Dipole Force

(2.47)

As this dipole force Fdip = −∇Udip is the negative gradient of a potential function

Udip =
h̄∆
2

ln
(

1 +
I

1 + δ2

)
(2.48)
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Figure 2.2: This figure shows
the ratio of the correct ex-
pression for the dipole force
[Eq. (2.48)] to the approximate
expression [Eq. (2.49)]. In the
far-detuned limit, the dipole
potential can be well approxi-
mated by the simpler expres-

sion Eq. (2.49).

it is a conservative force. Regions of high intensity form an attractive potential for
∆ < 0, known as red detuning, or a repulsive potential for ∆ > 0, known as blue
detuning. In the far detuned limit ∆ � Ω (equivalent to δ �

√
I) this potential

approximates to

Udip ≈
h̄Γ
4δ
I (2.49)

which is inversely proportional to the detuning in linewidths. The validity of this
approximation is shown graphically in Figure 2.2.

2.7 Examples of the Dipole Force

The conservative dipole potential of Eq. (2.48) and (2.49) is ubiquitous in atom-
optics, and is used heavily in this thesis. It is worthwhile taking some time here
to examine some examples of atoms interacting with an optical dipole potential.
We will examine a repulsive barrier formed from a blue-detuned beam with δ > 0,
an attractive trapping potential formed from one or more red-detuned beams with
δ < 0, and optical lattices which are formed from two counter-propagaing laser
beams which interfere to create a standing wave.

2.7.1 Blue-detuned beam as an atom-optic mirror

A perfect experiment to demonstrate the conservative nature of the dipole force is
that of atoms bouncing off a repulsive, blue-detuned light sheet. We used 4W of
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Figure 2.3: A 87Rb BEC bouncing off of a blue-detuned light sheet. In contrast to
the classical case, a “quantum” bounce has a less well-defined position (although the
center-of-mass position is the same, by Ehrenfest’s theorem), and is a combination of
Airy functions given in Eq. (2.51). This work, performed in our lab, is similar to the
experiments in Ref. [28, 185, 16, 55, 11] for an optical mirror, but also has analogues
in the case of ultra cold neutrons [103, 127] and photons [64]. As the reflecting barrier
was not perfectly level, the atoms bounced away from the camera and thus do not

reach the same average height as when they were released.

green light at 532nm (Sourced from a Coherent Verdi Laser) which was focussed
into a light sheet of around 20µm thickness, via a f=15cm cylindrical lens. The
light sheet was positioned 0.5mm below the position where we form a 87Rb Bose-
Einstein condensate. This green light was shuttered so it would only turn on after
the condensate was formed, otherwise stray light caused heating and prevented con-
densation formation. By capturing a time-series of 1ms spaced images after release
of the condensate, (see Figure 2.3) we are able to observe the atoms reflecting from
the blue-detuned light sheet. By comparing Eq. (2.49) to the gravitational potential
energy of the atoms, we can see that the potential energy of the barrier is about 200
times the kinetic energy of the atoms at the time of impact.

The eigenstates of the free-particle on a gravitational incline in the z-direction are
Airy functions [96, 24]

ψj(z) = NjAi
(

z
lg
− αj

)
. (2.50)

≈
[

2π2

3(j− 1/4)

] 1
6

Ai

(
z
lg
−
[

3π

2
(j− 1/4)

] 2
3
)

(2.51)

where on the last line approximations to the normalisation constant and zero of the
Airy function for large j are used. The wave function for the so-called "Quantum
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Figure 2.4: A blue-detuned light sheet was used as a matter-wave beam splitter. In
(a) the bottom cloud has passed through the barrier, while the top cloud was re-
flected. As the transmitted fraction [shown for several realisations in (b)] depends
quite sensitively [Eq. (2.53)] upon the height of the optical potential, it was not very
stable. The energy of the cloud as it encountered the barrier was controlled by vary-
ing the position of the blue-detuned barrier below the position at which the BEC was
formed, while the energy of the barrier was controlled by varying the intensity of the
blue-detuned light. The atom cloud had been falling for 11ms at the time at which it

encountered the optical potential.

Bouncer", a free particle on an incline with an infinite potential wall trapping the
particle, is a sum over those Airy functions which go to zero at the infinite wall at
z = 0 [93]. The center-of-mass position 〈x̂〉 is of course the same as the classical case,
by Ehrenfest’s theorem. This quantum-bouncing behaviour can be seen clearly from
t ≈ 2ms onwards in Figure 2.3.

2.7.2 Blue-detuned beam as a vertical beamsplitter

By lowering the intensity of the beam creating the optical potential barrier until some
fraction of the atoms pass by and remainder does not, we can create a matter-wave
beam-splitter. An experimental realisation of this is presented in Fig. 2.4. As a first
order analytic approximation we can treat it like a plane wave with incident energy

E = (h̄k1)
2

2m impacting upon a finite square barrier of width a and potential height V
so that the transmission probability pT is given by [219]
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Figure 2.5: (a) Diagram illustrating transmission of a plane-wave through a square
barrier of width a and potential energy height V. (b) Transmission probability pT as a
function of unitless incoming energy E , and barrier width D, as per Equation (2.53).
Tunnelling occurs in the classically forbidden region in the bottom left of the plot

where E < 1.

pT =
1

1 + 1
4

(
k1
k2
− k2

k1

)2
sin2 (k2a)

(2.52)

where k2 =
√

2m(E−V)

h̄2 ≤ k1 is the wavenumber of the matter-wave while it is on top
of the potential barrier. This can be re-written in terms of the dimensionless barrier
width D = a

√
2mV/h̄ and incoming energy E = E/V as

pT =
1

1 +
sin2(D

√
E−1)

4E(E−1)

(2.53)

This probability is illustrated in Figure 2.5. In order to realise a truly quantum beam
splitter we want each atom to have roughly a 50% chance of being split either way, as
opposed to simply filtering a cloud of atoms with a spread in energy into high and
low energy atoms.

An advantage of such a beam splitter is a very fine dependence upon the input wave
function, colloquially a ’hair trigger’. So in the first instance it could be used as
a sensitive measuring device, to measure fluctuations in drop height for example.
However it is also very sensitive to the properties of the blue-detuned beam used, so
it could be used as a beam-measurement tool.
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Figure 2.6: A representation of atoms suspended in a red-detuned optical waveguide.

Another possible use of such a beam splitter is atom-number squeezing. Schemes ex-
ist for the generation of NOON states 1√

2
(|N, 0〉+ |0, N〉) by colliding bright matter-

wave solitons with repulsive barriers [94, 26]. These NOON states can then be con-
verted into meterologically useful squeezing by further state manipulation.

2.7.3 Red-detuned beam as a Dipole trap

A key component for the experiments in the remainder of this thesis is the horizontal
optical waveguide.

For a gaussian beam with total power P, focus at the origin, Rayleigh length xR =
πw2

0
λ

and radial width w(x) = w0

√
1 +

(
x

xR

)2
, the intensity profile is given by

I(x, r) =
2P

πw(x)2 exp
( −2r2

w(x)2

)
. (2.54)

Restricting ourselves to the x-z plane we can set r = |z|, and introducing Psat =
Isat
2 πw2

0
for w0 = w(0) we have the normalised intensity as

I(x, z) =
P

Psat

(
w0

w(x)

)2

exp
( −2z2

w(x)2

)
. (2.55)

The dipole-force potential energy landscape is given by Eq. (2.49),

Udip ≈
h̄Γ
4δ
I(x, z) (2.56)

=
h̄Γ
4δ

P
Psat

(
w0

w(x)

)2

exp
( −2z2

w(x)2

)
(2.57)

but for the total potential energy we must add gravity,

Utot = Udip −mgz (2.58)

=
h̄Γ
4δ

P
Psat

(
w0

w(x)

)2

exp
( −2z2

w(x)2

)
−mgz . (2.59)

To find the vertical minimum zmin(x) in this potential we must set the vertical com-
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ponent of the force equal to zero,

0 = −dUtot

dz
(2.60)

= mg +
h̄Γ
δ

P
Psat

(
w0

w(x)

)2 zmin

w(x)2 exp
(−2z2

min
w(x)2

)
. (2.61)

This equation has the real solution

zmin(x) =
i
2

w(x)
w0

√√√√W

(
−4 f 2

[
w(x)

w0

]6
)

(2.62)

where we have defined the unitless constant

f ≡ mgw0

h̄Γ
δ

P/Psat
(2.63)

and W(ξ) is the Lambert W-function, i.e. the solution to the transcendental equation

ξ = W(ξ)eW(ξ) . (2.64)

For W(ξ) to be real we must have its argument ξ ≥ − 1
e . This gives us the criteria for

a trapping potential to exist for the given parameters,(
w(x)

w0

)3

f <
1

2
√

e
(2.65)

mgw0

h̄Γ
δ

P/Psat

[
1 +

(
x

xR

)2
] 3

2

<
1

2
√

e
(2.66)

which for x = 0 gives the criterion f < 1/2
√

e or

mgw3
0

h̄Γ
Isatδ

P
<

1
π
√

e
(2.67)

≈ 0.2 (2.68)

For small |ξ|, we have eξ ≈ 1 and so we can approximate W(ξ) ≈ ξ. In this small f
limit the solution becomes

zmin(x) ≈ −
(

w(x)
w0

)4

f . (2.69)

As the width of the gaussian beam is given by w(x) = w0

√
1 +

(
x

xR

)2
for the Rayleigh
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length xR =
πw2

0
λ , we have

zmin(x) ≈ −
(

1 +
[

x
xR

]2
)2

f (2.70)

≈ −
(

1 + 2
[

x
xR

]2
)

f (2.71)

= −mgw0

h̄Γ
δ

P/Psat

(
1 + 2

[
x

xR

]2
)

(2.72)

= −mgw0

h̄Γ
δ

P/Psat

(
1 + 2

[
xλ

πw2
0

]2
)

. (2.73)

The curvature κ of the potential minimum zmin near x = 0 is given by

κ =
d2zmin

dx2

∣∣∣∣
x=0

(2.74)

= −4 f
x2

R
(2.75)

= − 2λ2

πw0

mg
h̄Γ

δ

P
Isat (2.76)

from which it can be seen that to reduce the curvature of the waveguide potential
energy minimum, we would like the largest possible waist w0 and power P in the
beam.

2.7.4 Two photon transitions

It is possible to create a system whereby single photon transitions (which involve
spontaneous emission) are highly improbable, while two-photon transitions (involv-
ing stimulated absorption and emission) are the dominant interaction. Such schemes
depend upon a three-level system in which an intermediate atomic state is never
very highly populated, but simply couples the two other states. Figure 2.7 shows
a ‘lambda’ type of three-level system in which two meta-stable ground states |1〉
and |2〉 are coupled via a higher-energy excited state |e〉 and the exchange of two
photons. If the detuning ∆1 is chosen such that the lasers are far-detuned from the
excited state (i.e. there will be no macroscopic population of the excited state fol-
lowed by spontaneous emission) then the system can be again treated as a two-level
system via adiabatic elimination. This is well treated in several places [5, 62]. The
result is that the effective two-level Rabi frequency is given by
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Figure 2.7: Energy level diagram
for a 3-level system undergoing a

2-photon transition.

Ω2,eff =
Ω1eΩ2e

∆1
(2.77)

while the effective two-level detuning is given simply by ∆2. The advantage to such
a scheme is that stimulated processes dominate over spontaneous ones, allowing
complete control over a coherent system over longer timescales. Such a scheme is
used in Raman, and Bragg transitions, and even the dipole force can be formulated
in this way.

2.7.5 Optical Lattices

So let’s say you shine two plane-wave laser beams with slightly different frequencies
(so that k is roughly the same for both) in opposite directions on top of one another.
The resulting electric field

E = E1 cos(w1t− k.r− φ) + E2 cos(w2t + k.r + φ) (2.78)
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when squared to give the intensity, and averaged over many optical periods, gives

I =
cε0

2
|E|2 (2.79)

=
cε0

2

(
E2

1 + E2
2

2
+ E1E2 cos(2k.r− [w2 − w1]t + φ)

)
(2.80)

=
I1 + I2

2
+
√

I1 I2 cos(2k.r− [w2 − w1]t + φ) (2.81)

=
I1 + I2

2
+
√

I1 I2 cos(2k. [r− r0 + vLt]) (2.82)

which is a lattice with a wavevector kL = 2k, moving with a phase velocity given by
kL.vL = w1 − w2, and with a phase offset determined by the location of an arbitrary
reference position φ = kL.r0. According to Eq. (2.49) and assuming I1 = I2 = I this
gives a lattice potential for the atoms of

Udip ≈
h̄ΓI
4δ
{1 + cos(2k.r− [w2 − w1]t + φ)} (2.83)

≡ U0

2
[1 + cos(2k.r− [w2 − w1]t + φ)] (2.84)

For zero phase offset φ = 0 and in the Doppler-shifted velocity frame in which equal
frequencies are coming from either direction, this becomes the standing wave

Udip =
U0

2
[1 + cos(2k.r)] . (2.85)

2.7.6 Bragg diffraction

By briefly applying an optical lattice to the atoms (with the correct resonance con-
dition), it is possible to split the cloud into two momentum states, separated by 2n
photon recoils, where the Bragg order n is an integer. This can also be treated as a
2n-photon transition. The atoms which are kicked by the Bragg lattice obey the same
energy and momentum conservation laws as a tennis ball bouncing off a brick wall,
i.e. in the lattice frame it acts like a perfectly elastic collision with an immovable
lattice. This picture can be handy to keep in mind.

2.7.6.1 Bragg resonance

The de Broglie wavevector of an atom moving at velocity vatom is given by

mvatom = h̄katom
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Figure 2.8: Demonstration of n-th order Bragg transitions along the waveguide for
n = 1 to n = 6.

Figure 2.9: (a) In the frame of the lattice, the atom has a certain incoming momentum.
(b) If the incoming momentum is a even-integer multiple of the photon momentum
h̄k then the atom can be kicked by the lattice through the exchange of 2n photons,
reversing its initial momentum. (c) Energy diagram for the Bragg resonance of a 4h̄k

transition, in the frame in which the atom is initially at rest.
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Now in the velocity frame of the lattice, we want vatom = ±vL for atoms coming
towards and reflecting off from the lattice respectively (where vL is the velocity of
the lattice in the frame in which the atoms are initial stationary), so

h̄katom = mvL (2.86)

=
m∆ω

kL
(2.87)

=
m∆ω

2k
(2.88)

for a lattice with frequency difference ∆ω in the frame of the atoms.

We also want the constructive resonance condition3 for an nth order kick (for lattice
wavelength Λ = 2π

|kL| =
π
|k| )

nλatom = 2Λ (2.89)

∴ katom =
nkL

2
(2.90)

= nk (2.91)

which simply says that the wavefunction of atoms reflecting from successive peaks
of the lattice must add constructively. Putting Eq. (2.86) and (2.91) together we have

h̄nk =
m∆ω

2k
(2.92)

∆ω =
2nh̄|k|2

m
(2.93)

= 4nωr (2.94)

where we have defined the recoil frequency to be ωr ≡ h̄|k|2
2m . In the case where the

two beams are not counter-propagating, this result generalises to

∆ω = 4nωr sin2
(

θ

2

)
(2.95)

where θ is the angle between the two beams which make up the lattice, i.e. θ =
0 for two overlapping, co-propagating beams and θ = π for counter-propagating
beams. This means that the energy transferred is given by (number of 2-photon

3The constructive resonance condition here is different to the case of an optical cavity because the
reflective surfaces in a cavity face opposite directions, so only one gets a π phase shift for reflection,
whereas if both cavity mirrors pointed in the same direction then the resonance conditions would be
the same as for this Bragg case.
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pairs)×(energy per 2-photon pair):

∆E = nh̄∆ω

= 4n2h̄ωr

= 4n2Er

where Er ≡ h̄ωr. This expression is quadratic in n, as it must be in order to satisfy
the dispersion relation for matter, E = |p|2

2m as depicted in Figure 2.9 (c).

2.7.6.2 Rabi frequency

As n-th order Bragg diffraction is a 2n photon process, the laser power required to
drive higher-order transitions increases quite rapidly. The comparable expression to
Eq. 2.77 for the effective 2n-photon Rabi frequency is [233]

Ω2n,eff =
Ωn

2,eff

(8ωr)n−1 [(n− 1)!]2
. (2.96)

2.7.7 Bloch oscillations

If we instead turn up the lattice intensity slowly, while the lattice is co-moving with
the atoms, we can load the atoms into the new perturbed energy eigenstates, which
are depicted in Figure 2.10. To work out what these are exactly, let us consider an
atom in one dimension experiencing a periodic potential caused by the optical lattice,

Udip(r) =
U0

2
[1 + cos(2k.r)] (2.97)

=
U0

4

[
2 + e2k.r + e−2k.r

]
. (2.98)

The eigenfunctions of the system are thus subject to the following Schrödinger equa-
tion

Hψn(r) =
[

p̂2

2m
+ Udip(r)

]
ψn(r) (2.99)

= Enψn(r) (2.100)
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By Floquet’s theorem, the eigenfunctions can be expressed as a plane wave e
iq·r

h̄ mul-
tiplied by a function φn(q, r) with the periodicity of the lattice

ψn(q, r) = e
iq·r

h̄ φn(q, r) .

As φn(q, r) has the periodicity of the lattice (i.e. repeats every 2k · r) we can write it
as the following sum,

φn(q, r) =
∞

∑
j=1

cj(q, r) eij2k·r

so that

ψn(q, r) = e
iq·r

h̄

∞

∑
j=1

cj(q, r) eij2k·r (2.101)

=
∞

∑
j=1

cj(q, r) ei(2jk+q/h̄)·r (2.102)

and Eq. (2.100) becomes

Hψn(q, r) =
[

1
2m

(q + 2h̄kj)2 + Udip(r)
]

ψn(q, r) (2.103)

=

[
1

2m
(q + 2h̄kj)2 +

U0

4

(
2 + e2k.r + e−2k.r

)] ∞

∑
j=1

cj(q, r) ei(2jk+q/h̄)·r

(2.104)

∴ Hφn(q, r) =
[

1
2m

(q + 2h̄kj)2 +
U0

4

(
2 + e2k.r + e−2k.r

)]
φn(q, r) (2.105)

This Hamiltonian can be represented in matrix form as
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H =
U0

2
1+ (2.106)

. . . U0
4 0 0 0 . . . 0 0 0

U0
4

( q
h̄k − j

)2 U0
4 0 0 0 0

0 U0
4

. . . . . . . . . 0

0 0
. . .

( q
h̄k − 1

)2 U0
4 0

...

0 0
. . . U0

4

( q
h̄k

)2 U0
4

. . . 0 0
... 0 U0

4

( q
h̄k + 1

)2 . . . 0 0

0
. . . . . . . . . U0

4 0
0 0 0 0 U0

4

( q
h̄k + j

)2 U0
4

0 0 0 . . . 0 0 0 U0
4

. . .



To find the eigenenergies En(q) we must find the roots of the polynomial

||H − En(q)1|| = 0.

In practice this is difficult for the full Hamiltonian, but luckily it is sufficient to
solve the same problem for an (2l + 1) × (2l + 1) truncated Hamiltonian instead
of the ∞ ×∞ Hamiltonian, as long as l � n [104, 227, 52]. In Figure 2.10 I have
truncated to l = 10. The parabolic energy dispersion relation at zero lattice intensity,
E = (q + nh̄k)2/2m, contains several degeneracies, some at q = 0 for ±n 6= 0 and
some at q = h̄k for all n. The end result of increasing the lattice depth is the creation
of several avoided crossings, as seen in Figure 2.10(b).

Two interesting cases deserve special mention. For En(q) � U0, i.e. a low lattice
depth or a high relative velocity between the atoms and the lattice, the atoms simply
experience the average value of the lattice depth, and so their energy is shifted by
the average Stark shift of the lattice, U0/2, i.e.

En(q) ≈
{

(n + |q|
h̄k )

2Er +
U0
2 n even

(n + 1− |q|h̄k )
2Er +

U0
2 n odd

(2.107)

and as such the atoms are not trapped by the lattice. For En(q) � U0 i.e. a high
lattice depth and the lattice and atom frames are coincident, the lower energy levels
correspond to tight binding in lattice sites which look approximately like harmonic
oscillators with ωHO = 2

√
U0ωr/h̄, and thus have energies

En(q) ≈ (2n + 1)
√

U0Er (2.108)
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Figure 2.10: Energy En(q) of atoms in the nth Bloch band of an optical lattice with
quasi momentum q. (a) Diagram illustrating the band structure of moving atoms in
the presence of an optical lattice. In the top-left half, where the atoms have more
kinetic energy than the lattice depth, En(q) > U0, the atoms propagate freely albeit
with their energy Stark-shifted by the average value of the lattice intensity. In the
bottom right half, where the lattice is deeper than the kinetic energy of the atoms (i.e.
each atom is tightly bound to a given lattice site), the energy levels separate out and
discretise according to the levels of a harmonic oscillator. After Ref. [227]. (b) Levels
splitting as a function of quasi momentum q for several lattice depths. With almost no
lattice, kinetic energy follows the familiar quadratic relationship with momentum. As
the lattice becomes deeper, the discrete harmonic-oscillator-like energy levels begin

to appear. After Ref. [104].
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Figure 2.11: Plots of (E1 − E0)
2 /E2

r at q = 0 against U0/Er, in order to examine the
right-hand side of Eq. (2.109), the adiabaticity criterion for loading into the lowest
band of a Bloch lattice. (a) For small U0 the RHS of the criterion is quadratic with
increasing lattice depth, whereas (b) for large depth, it is linear again. The dashed

line in (a) is a quadratic approximation ∼ 16 + U2
0

6E2
r
.

2.7.7.1 Adiabatic loading

In order to adiabatically load atoms which are stationary in the lattice frame it is
necessary to raise the lattice intensity sufficiently slowly. Denoting the eigenstates by
|n, q〉, an exact adiabatic loading criterion is given by the formula [67, 145]∣∣∣∣〈1, q| ∂H

∂t
|0, q〉

∣∣∣∣� (E1(q)− E0(q))
2

h̄
. (2.109)

The left hand side of this equation can be seen from the matrix in Eq. (2.106) to be∣∣∣∣〈1, q| ∂H
∂t
|0, q〉

∣∣∣∣ = 1
4

dU0

dt
(2.110)

The energy difference on the right hand side of Eq. (2.109) will be maximum at q = 0,
i.e. the atoms are precisely stationary in the lattice frame, and it can be determined
approximately by truncating the Hamiltonian as above. The result of this has been
plotted in Figure 2.11, but we can employ the previous two simplifying cases (low or
high lattice depth U0) and examine the behaviour in each. In the low lattice depth
U0 . 10Er regime we have4

4The quadratic term should actually be the Stark shift squared, U2
0

4 , but empirically U2
0

6 approximates
the function better over a larger range.
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Figure 2.12: Plot of the lattice depth U0(t)/Er over time for the fastest possible load
rate, while satisfying the adiabaticity criterion Eq. (2.109) by a factor of χ. The
solid line in both subfigures is numerically evaluated. The dashed line in (a) is the
approximation for small U0 . 20 of U0(t) ≈ 10Er tan

(
2π ωrt

χ

)
, while the dashed line

in (b) is the approximation for large U0 & 100 of U0(t) ≈ 1.16 Ere(15 ωr t
χ ).

(E1(0)− E0(0))
2 ≈ 16E2

r +
U2

0
6

(2.111)

and so the adiabatic loading criterion (2.109) becomes

dU0

dt
� 1

h̄

(
64E2

r +
2U2

0
3

)
(2.112)

Assuming “�" implies at least factor of χ difference, (for example χ = 10) then the
maximum increase rate is given by

dU0

dt

∣∣∣∣
max
≈ 1

χh̄

(
64E2

r +
2U2

0
3

)
(2.113)

∴ U0 max(t) = 4
√

6Er tan

(
8
χ

√
2
3

ωrt

)
(2.114)

≈ 10Er tan
(

2π
ωrt
χ

)
(2.115)
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In the large U0 limit the maximum lattice depth increase rate is proportional to the
current lattice depth so we would expect an exponential rise. Heuristically this rise
fits well to the relation

U0(t) ≈ 1.16 Ere(15 ωr t
χ ) (2.116)

in the large U0 limit, as shown in Figure 2.12 (b).

2.7.7.2 Adiabatic acceleration

Once the lattice is loaded, we would like to accelerate it along with the atoms we have
loaded into it. In order to accelerate the atoms without allowing them to fall behind,
we have another adiabaticity criterion to follow. We want the atoms to remain in the
lowest Bloch band and oscillate in quasimomentum q. As the atoms reach q = h̄k
they should be Bragg-kicked back to q = −h̄k, and the acceleration can continue.
The probability for this to fail in one Bloch oscillation is given by the Landau-Zener
formula

PLZ = e−
π
16

[
E1(h̄k)−E0(h̄k)

Er

]2
ωrτb (2.117)

where τb is the time for one Bloch oscillation. This formula again involves the dif-
ference in energy between the two lowest Bloch bands, but this time at the edges of
q = ±h̄k instead of at the centre, as this is where the Bragg transition will occur.
Casting the problem in terms of the acceleration ab we apply to the Bloch lattice, we
can re-write ωrτb = ar/ab for a newly-defined recoil acceleration ar ≡ h̄2k3

m2 . So the
probability can also be written as

PLZ = e−
π
16

[
E1(h̄k)−E0(h̄k)

Er

]2 ar
ab (2.118)

Now the probability for nb successful Bloch oscillations is

Pnb = (1− PLZ)
nb (2.119)

≈ 1− nbPLZ (2.120)

where the approximation is for small probability of failure PLZ on each oscillation. So
we want nbPLZ to be small. The energy part of the exponential in Eq. (2.118) is plotted
in Figure 2.13. As seen in Fig. 2.13 (a) it is reasonably well approximated for small
lattice depths U0 . 10Er by the average stark shift squared, [E1(h̄k)− E0(h̄k)]2 ≈
U2

0 /4. In this regime the probability of nb successful Bloch oscillations is given by
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Figure 2.13: Plots of (E1 − E0)
2 /E2

r at q = h̄k against U0/Er, in order to examine the
Landau-Zener formula [Eq. (2.118)], the criterion for remaining in the lowest band
of a Bloch lattice while accelerating the lattice. (a) For small U0 the energy difference
squared is quadratic with increasing lattice depth, whereas (b) for large depth, it is

linear again. The dashed line in (a) is the quadratic approximation U2
0

4E2
r
.

Pnb ≈ 1− nbe−
π
64

(
U0
Er

)2 ar
ab . (2.121)

For the probability of failure to remain at the same small value we must require that

U2
0

ab
ln nb = constant (2.122)

and so for a constant number of Bloch oscillations nb, the maximum adiabatic Bloch
acceleration rate ab scales quadratically with lattice depth, and hence also scales
quadratically with available laser power, in this small lattice depth regime of U0 .
10Er. This agrees with previous experimental results (see Fig. 12 of Ref. [184]).

For higher lattice depths the energy difference squared becomes becomes linear,
[E1(h̄k)− E0(h̄k)]2 ≈ 4U0Er, [see Fig. 2.13(b)] and so the probability tends towards

Pnb ≈ 1− nbe−
π
4

U0
Er

ar
ab . (2.123)
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In this case, for the probability of failure to remain at the same small value we must
require that

U0

ab
ln nb = constant (2.124)

and so for a constant number of Bloch oscillations nb, the maximum adiabatic Bloch
acceleration rate ab scales linearly with lattice depth, and hence also scales linearly
with available laser power, in this large lattice depth regime of U0 & 10Er.

2.8 Scattering Force

The scattering force [the first term of Eq. (2.47)] for a two level atom is conveniently
given by the momentum of the absorbed photon p = h̄k times the scattering rate
Rscatt for a two-level system

Fscatt =
h̄kΓ

2
Ω2

∆2 + Ω2

2 + Γ2

4

(2.125)

=
h̄kΓ

2
I

1 + δ2 + I (2.126)

The scattering rate (number of photons scattered per atom per unit time) is then
given by

Rscatt =
Γ
2

Ω2

∆2 + Ω2

2 + Γ2

4

(2.127)

=
Γ
2

I
Isat

1 + I
Isat

+
( 2∆

Γ

)2 (2.128)

=
Γ
2

I
1 + I + δ2 (2.129)

The scattering force is important for laser-cooling of atoms, and must be considered
as a source of unwanted heating when using dipole potentials. The scattering rate
also determines how much light is redirected by a cloud of atoms during absorption
imaging.
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2.8.1 Magneto-Optical Trapping

The Magneto-Optical Trap (MOT) has been a mainstay of cold-atom physics since
its realisation in 1987 [193]. In a 3D MOT (depicted in Figure 2.14) atoms are col-
lected and cooled thanks to the scattering force with a combination of the Doppler
and Zeeman effects. The scattering occurs from six optical beams of the correct po-
larisation, coming in along the positive and negative x, y and z axes. These beams
are red-detuned from resonance so that the Doppler shift will bring them closer to
resonance is the atom is moving towards a given beam. Near the centre of the MOT
the atoms experience a large, linear magnetic field gradient thanks to the quadrupole
coil arrangement, which crosses through zero magnetic field at the centre of the trap.
The important results are derived elsewhere [85, 168] and shown in Fig. 2.14.

2.8.2 Imaging

The scattering rate is also important in absorption and fluorescence imaging. In
absorption imaging, near-resonant light is incident upon a cloud of atoms. The atoms
absorb some of this light and scatter it in a random direction. Here we assume all
of this light is lost, and only the un-scattered light remains, and is captured on the
camera. Thus we take a picture of the “shadow” of the atoms. The intensity of the
light, with photons of energy Eν = h̄ω passing through a given area A, is

I =
Eν

A
× number of photons

time
(2.130)

and this will decrease as it passes through a cloud of two-level atoms as

dI
dz

=
Eν

A
× number of photons

time× number of atoms︸ ︷︷ ︸× number of atoms
volume︸ ︷︷ ︸×A (2.131)

= Eν × Rscatt × ρ (2.132)

for 3D density of atoms ρ. Inserting Eq. (2.129),
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Figure 2.14: This graphic briefly explains the workings of a Magneto-Optical Trap.
The two graphs at the bottom use arbitrary, illustrative parameters.
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dI
dz

= ρEνRscatt (2.133)

= ρ
hc
λ

Γ
2

I
1 + I + δ2 (2.134)

= ρI
hcΓ

2λIsat

1
1 + I + δ2 (2.135)

and using Isat =
πhcΓ
3λ3 ,

dI
dz

= ρI
3λ2

2π

1
1 + I + δ2 (2.136)

= ρI
σ0

1 + I + δ2 (2.137)

= ρIσ (2.138)

where we have defined the resonant, low intensity cross-sectional area of the two-
level atom as σ0 ≡ 3λ2

2π and the full cross-sectional area as

σ ≡ σ0

1 + I + δ2 . (2.139)

For low intensity light, I � 1+ δ2, the cross-sectional area is σ ≈ σ0
1+δ2 and Eq. (2.138)

has the solution

I f = I0 e−σ
∫

ρ dz (2.140)

= I0 e−nσ (2.141)

Thus, we can find the integrated atom density n =
∫

ρ dz by taking a picture with
atoms I f and without atoms I0 and computing

n =
1
σ

ln
I0

I f
(2.142)

pixel-wise over the image. Sometimes we will refer to Optical Depth (OD), which is
simply given by OD = nσ. Further details on the imaging process and calculation
are explained in detail elsewhere [163].



Chapter 3

Atom Interferometer Theory

It is a commonly stated that the acceleration sensitivity of an atom interferometer
is proportional to the space-time area enclosed between the two interfering arms
[189, 150, 63]. Here we derive the interferometric phase shift for an extensive class
of interferometers, and explore the circumstances in which only the inertial terms
contribute. We then analyse various interferometer configurations in light of this
geometric interpretation of the interferometric phase shift.

3.1 Atom-light interactions

If a particle experiences a linearly varying potential term V(x) = mg · x and is oth-
erwise free, it will experience an acceleration g. The two arms of the interferometer,
labelled a and b, experience accelerations aa(t) and ab(t) respectively at time t, which
we shall define from t = 0 in the middle of our interferometer as in Fig. 3.1. These
accelerations may comprise both the inertial acceleration g and any other acceleration
ãa(t) and ãb(t) from time-varying potentials used to generate the interferometer (e.g.
Bragg diffraction pulses, Bloch lattice accelerations, magnetic field gradients etc.).

For example, to treat a Bragg diffraction pulse at time t1 which imparts a downwards
velocity kick of 2nh̄k/m to path b, (see Figure 3.2) we can write the kicked path’s
acceleration in the inertial frame as ãb(t) = −δ(t− t1)

2nh̄k
m , and the acceleration of

the unkicked path (also in the inertial, freely-falling frame) as ãa(t) = 0. For a more
complicated sequence of kicks, we can simply take the sum of each one.

As another example, constant acceleration in an optical Bloch lattice can be expressed
as a classical acceleration ãb(t) = 2nb h̄k

mτb
where the number of Bloch oscillations is

given as nb and the time for a single oscillation is τb. Alternatively, it may be ex-
pressed as one 2h̄k kick every Bloch oscillation period τb, starting τb/2 from the
beginning, e.g. ãb(t) = ∑nb

i=1
2h̄k
m δ(t − ti) where ti = t0 + τb(i + 1/2) and t0 is start

45
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Figure 3.1: (Color online) The two paths a and b form an arbitrary closed interferom-
eter. For clarity, the diagram is drawn with g = 0. We are calculating the difference in
phase accumulated along two paths which exit the interferometer at the same place
and with the same final velocity, here shown as a blue arrow. The alternate exit path
is shown as a grey dotted arrow. The area enclosed between the two paths in this

space-time diagram is the space-time area, A.

time of the Bloch lattice acceleration. Either treatment gives the same space-time area
in the total interferometer. For such a treatment to correctly account for the phase
shift along each path individually the atoms must experience a whole number of
Bloch oscillations. A small correction when this is not the case has been investigated
in Ref. [145].

3.2 Interferometer Phase Shift

3.2.1 Action

The phase shift of an atom interferometer can be calculated by the path integral
formalism. Consider the classical action Sa of a particle of mass m moving along a
path xa(t) with velocity va(t) and experiencing an acceleration aa(t),
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Figure 3.2: Treat each
Bragg diffraction as a δ-
function acceleration kick
on the diffracted path,
which in this figure is
path b. The other path
(path a) experiences no

effect.

Sa =
∫ T

−T
Ka −Va dt (3.1)

= m
∫ T

−T

v2
a

2
+ aa · xa ds. (3.2)

where we have defined the potential term Va(t) = −maa(t) · xa(t). The phase shift of
an interferometer consisting of arms traversing the classical paths a and b is given by

∆Φ =
∆S
h̄

(3.3)

=
Sa − Sb

h̄
(3.4)

=
m
h̄

∫ T

−T

v2
a − v2

b
2

+ aa · xa − ab · xb ds (3.5)

=
m
h̄

∫ T

−T

∆
[
v2]
2

+ ∆ [a · x] ds. (3.6)

If we now make the distinction between the acceleration g the atoms would experi-
ence inertially, in absence of the interferometric sequence and the acceleration ãi the
atoms feel along path i specifically because of the sequence, along with the corre-
sponding separations for velocity and position,

ai = ãi + g (3.7)

vi = ṽi + vg (3.8)

xi = x̃i + xg (3.9)
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we can expand the kinetic energy term in the integrand of equation (3.6) to be

∆
[
v2]
2

=
ṽ2

a − ṽ2
b

2
+ vg(ṽa − ṽb) (3.10)

while the potential term in the integrand of equation (3.6) becomes

∆ [a · x] = ãa · x̃a − ãb · x̃b + (ãa − ãb) · x̃g + g · ∆x̃ (3.11)

If we consider just the integral of the potential term, and integrate by parts

∫ T

−T
∆ [a · x] dt (3.12)

=
∫ T

−T
ãa · x̃a − ãb · x̃b + (ãa − ãb) · xg + g · ∆x̃ dt (3.13)

= [ṽa · xa − ṽb · xb]
T
−T −

∫ T

−T
ṽ2

a − ṽ2
b dt

−
∫ T

−T
vg(ṽa − ṽb) dt +

∫ T

−T
g · ∆x̃ dt (3.14)

then Eq. (3.6) becomes

∆Φ =
m
h̄

∫ T

−T

∆
[
v2]
2

+ ∆ [a · x] ds. (3.15)

=
m
h̄

(
[ṽa · xa − ṽb · xb]

T
−T −

1
2

∫ T

−T
ṽ2

a − ṽ2
b dt +

∫ T

−T
g · ∆x̃ dt

)
(3.16)

Let us call the boundary term ∆Φsep, the separation phase

∆Φsep =
m
h̄
[ṽa · xa − ṽb · xb]

T
−T (3.17)

=
[
k̃a · xa − k̃b · xb

]T
−T (3.18)

=k̃a(T) · xa(T)− k̃b(T) · xb(T)− k̃a(−T) · xa(−T) + k̃b(−T) · xb(−T) (3.19)

For the final states to interfere they must have the same final position xb(T) = xa(T),
and for this interference to persist in the far-field they must have the same final
velocity, k̃b(T) = k̃a(T) so the separation phase depends only upon the initial states,

∆Φsep = k̃b(−T) · xb(−T)− k̃a(−T) · xa(−T) . (3.20)
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In the case that the initial velocities are the same then the separation phase becomes

∆Φsep = −k̃(−T) · ∆x(−T) (3.21)

= −k̃i · ∆xi . (3.22)

and if the initial separation ∆xi = 0 (i.e. the interferometer is closed) then there is no
contribution from the separation phase.

The kinetic term can be re-written in terms of frequency, through Ẽkin = h̄ω̃ = h̄2 k̃2

2m

∆Φkin = − m
2h̄

∫ T

−T
ṽ2

a − ṽ2
b dt (3.23)

=
∫ T

−T
ω̃b − ω̃a dt (3.24)

So the total interferometer phase shift becomes

∆Φ = −k̃i · ∆xi +
∫ T

−T
ω̃b − ω̃a dt +

m
h̄

∫ T

−T
g · ∆x̃ dt (3.25)

= ∆Φsep + ∆Φkin + ∆Φinertial (3.26)

There are many ways (thorough various symmetries) in which to make ∆Φkin = 0,
which we will discuss in the next section. In any of these cases, for a closed interfer-
ometer, the phase shift simplifies to

∆Φ = ∆Φinertial (3.27)

=
m
h̄

∫ T

−T
g · ∆x̃ dt (3.28)

and for a constant acceleration g this can be pulled out of the integral,

∆Φ =
m
h̄

g ·
∫ T

−T
∆x̃ dt (3.29)

=
m
h̄

g · A (3.30)

where we have defined the space-time area on the last line, A ≡
∫ T
−T ∆x̃ dt.

To include the possibility of different internal magnetic states of the atoms, an ad-
ditional phase shift ∆Φmag must be added. As the potential energy of a magnetic
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dipole with dipole moment µ in a magnetic field is given by U = −µ · B, the phase
shift is given by

∆Φmag = −
∫ T

−T
∆U dt (3.31)

=
∫ T

−T
B · ∆µ dt (3.32)

This will apply to Raman interferometry in particular, whereas in Bragg interferom-
etry the atoms stay in the same internal state and so this shift is zero.

3.2.2 Time Symmetries

There are many arbitrary ways to create an interferometer in which ∆Φkin = 0. One
way is to enforce either of the following velocity symmetries

ṽa(t) = ṽb(−t) (i) (3.33)

or

ṽa(t) = −ṽb(−t) (ii) (3.34)

from which it follows that

ṽ2
a(t) = ṽ2

b(−t) (3.35)∫ T

−T
ṽ2

a(t) dt =
∫ T

−T
ṽ2

b(−t) dt (3.36)∫ T

−T
ṽ2

a(t)− ṽ2
b(t) dt = 0 (3.37)

∆Φkin = 0 (3.38)

These symmetries also help to cancel other shifts in real interferometers such as Stark
shifts and others as described in Section 3.3.1.
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3.2.3 Laser Phase

Any laser interaction which kicks a path in such a way to increase the space-time
area of the interferometer, its phase should be added, and any interaction which
kicks a path in such a way as to decrease the interferometer’s space-time area, its
phase should be subtracted. Thus

φL = ∑
increases A

φi − ∑
decreases A

φi (3.39)

where each φi is the laser phase accumulated along a certain path when that path
experiences a 2ni-photon-recoil change in momentum. Each laser phase is given by

φi = keff · xi (3.40)

= 2nk · xi (3.41)

This is a different way to state the same result as in Ref. [187], but simpler as we
are dealing with Bragg and not Raman transitions and so do not have to deal with
changes in internal state. Also, the laser phase as stated here only applies to a two-
path interferometer configuration. To generalize to more paths it must be stated in
terms of the direction of each kick as in Ref. [187], as opposed to w.r.t the space-time
area A.

3.3 Extensions

3.3.1 Constant energy offset

If one of the trajectories experiences a spatially constant potential energy offset V0(t),
for example due to a state-dependent Stark shift, this will cause a phase offset in the
interferometer of 1

h̄

∫
V0(t) dt. In the case where this shift is cancelled by an equal

shift in the opposite direction later in time, there is zero net phase shift. This cancel-
lation occurs in particular in the Constant-Acceleration Bloch (CAB) interferometer
configuration, because the un-accelerated arm of the interferometer experiences a
Stark shift due to the average optical lattice intensity.
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3.3.2 Vibrations and time-varying g

There is nothing in the derivation above preventing g being considered an arbitrary
function of time. In this case it must say within the integral

∆Φinertial =
m
h̄

∫ T

−T
g · ∆x dt . (3.42)

A symmetric variation of the form g(t) = g(−t) is used in measurements of the fine
structure constant, e.g. Refs [32, 39]. After a Ramsey-Bordé configuration interfer-
ometer has had its paths separated, both arms are loaded into the same Bloch lattice
and accelerated, then decelerated again, effectively changing g symmetrically in a
way proportional to the recoil frequency ωrec =

h̄k2

2m .

We can also consider the effect of a vibration and how this will couple in to our
interferometer signal. We can write a sinusoidal acceleration with frequency ω as

g = ac cos(ωt) + as sin(ωt) (3.43)

which will cause a phase shift in the interferometer output of

∆Φinertial =
m
h̄

∫ T

−T
[ac cos(ωt) + as sin(ωt)] · ∆x̃ dt (3.44)

=
m
h̄

[
ac ·

∫ T

−T
cos(ωt)∆x̃ dt + as ·

∫ T

−T
sin(ωt)∆x̃ dt

]
(3.45)

=
m
h̄
[ac · Ac(ω) + as · As(ω)] (3.46)

where on the last line we have defined the effective space-time areas Ac(ω) and
As(ω) for a given frequency of vibration ω. Note that the space-time area as defined
before is A = Ac(0).

If the path separation is symmetric about t = 0, i.e. ∆x̃(t) = ∆x̃(−t) then the sine
term cancels As(ω) = 0, leaving only the cosine term Ac(ω). A useful measure
of vibration sensitivity when this symmetry is present is the relative acceleration
sensitivity as a function of frequency, normalised to the sensitivity at ω = 0. This is
given by R(ω) ≡ |Ac(ω)|

|A| . From this unitless ratio we can deduce the phase response
to an acceleration with frequency ω via
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∆Φinertial =
mR(ω)

h̄
ac · A (3.47)

If the path separation is antisymmetric about t = 0, i.e. ∆x̃(t) = −∆x̃(−t) then the
cosine term cancels Ac(ω) = 0, leaving only the sine term As(ω). Therefore, these
types of interferometer are insensitive to a constant acceleration. A useful measure
of vibration sensitivity when this symmetry is present is the relative acceleration
sensitivity as a function of frequency, normalised to the sensitivity to a constant
acceleration of the corresponding symmetrized interferometer, i.e. A∗ ≡

∫ T
−T |∆x̃| dt

at ω = 0. This is given by R∗(ω) ≡ |As(ω)|
|A∗| . From this unitless ratio we can deduce

the phase response to an acceleration with frequency ω via

∆Φinertial =
mR∗(ω)

h̄
as · A∗ (3.48)

3.3.2.1 Fourier series decomposition

If g(t) can be considered an arbitrary piecewise continuous function of time between
−T ≤ t ≤ T, then it can be written as a Fourier series

g(t) =
∞

∑
j=0

[
ac,j cos

(
jπt
T

)
+ as,j sin

(
jπt
T

)]
(3.49)

for the Fourier coefficients

ac,j =
1
T

∫ T

−T
cos

(
jπt
T

)
a(t) dt (3.50)

and

as,j =
1
T

∫ T

−T
sin
(

jπt
T

)
a(t) dt . (3.51)

We can see that the effect of such an arbitrary acceleration will be a phase shift of

∆Φinertial =
m
h̄

∞

∑
j=0

[
ac,j · Ac

(
jπ
T

)
+ as,j · As

(
jπ
T

)]
. (3.52)
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3.3.3 Coriolis Effect

Similarly to the previous section the common inertial acceleration g should be kept
inside the integral

∆Φ =
m
h̄

∫ T

−T
g · ∆x dt (3.53)

whereupon the substitution g→ g + Ω× v can be used to perturbatively incorporate
the effect of rotation on the interferometer for small constant Ω, e.g. the rotation of
the earth 1. Thus

∆Φinertial =
m
h̄

∫ T

−T
(g + Ω× v) · ∆x dt (3.54)

=
m
h̄

(
g · A −

∫ T

−T
Ω · ∆x× v dt

)
(3.55)

=
m
h̄

(
g · A −Ω ·

∫ T

−T
∆x× dx

)
(3.56)

=
m
h̄

(
g · A −Ω ·

∮
x× dx

)
(3.57)

=
m
h̄
(g · A − 2Ω ·A) (3.58)

which reproduces the well-known Sagnac phase shift as the term on the right, where
A is the vector-area enclosed by the interferometer paths. Under the assumption that
all the k-vectors are parallel, the area arises both from an initial velocity vi and the
mean velocity of the accelerating atoms g, the area A is given by

A = −vi ×A− g×
∫ T

−T
t∆x dt (3.59)

where the second term (which goes as a higher power of interferometer time T than
the first term) will disappear if g× k = 0, or if the separation ∆x is symmetric about
t = 0. In this case the interferometer phase becomes

1Technically, this is evaluating a perturbative Lagrangian L ≈ mΩ · r × v along the unperturbed
path, as in Ref. [189], and ignoring the term proportional to Ω2.
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Figure 3.3: An interferometer in which the paths do not match up exactly at the final
beamsplitter is analogous to a double slit experiment [175]. In this case, the upper
output will be a fringe pattern like V2 cos (φ(y) + φL) + c where φL is the laser phase
and φ(y) determines the spatial fringes, but not the envelope. The lower output will

of course be π out of phase with the top output.

∆Φ =
m
h̄
(g− 2Ω× vi) · A (3.60)

3.3.4 Separation Phase

The results above all apply to a closed-loop interferometer configuration. If for some
reason, the parts of each state which overlap at the end of the interferometer did not
originate from the same place at the beginning of the interferometer (for example due
to a slight timing offset of the last pulse, as shown in Fig. 3.3), then the separation
phase is non-zero and we have

∆Φsep = ke · ∆x f (3.61)

where ∆x f is the separation of the two wavepackets at the recombination pulse, and
ke = 2nk is the momentum separation of the last Bragg kick. If this is due to a timing



56 Atom Interferometer Theory

Figure 3.4: Demonstration of spatial fringes due to a timing offset δT, performed
in our lab. In a Mach-Zehnder interferometer with a small time offset δT on the
last pulse, this is the 4h̄k output state only, as the interferometric phase φ π

2
of the

recombination π
2 pulse is varied. In the image for φ π

2
= 30o the DDS generated the

pulse sequence incorrectly so this image is not shown.

offset δT then the separation phase is given by

∆Φsep = ke ·
h̄ke

m
δT (3.62)

= 8n2ωrec δT (3.63)

where ωrec =
h̄k2

2m is the single-photon recoil frequency.

In this case a spatial interference pattern can develop in the far field which is analo-
gous to a double slit experiment [175]. The analogous double slit experiment would
have a slit spacing equal to the separation of the two wavepackets at the final beam-
splitter ∆x f . If y is the position vector away from the centre of the envelope of the
top output port in Fig. 3.3, then the spatial fringe in this output port will be given by
a fraction Nrel of the envelope,

Nrel =
V
2

cos (φ(y) + φL) + c (3.64)

=
V
2

cos
(

∆Φ + k · y n
π

δT
Texp

+ nφ π
2

)
+ c (3.65)

This is experimentally demonstrated in Fig. 3.4, for one output port of a 4h̄k inter-
ferometer.
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3.4 Example Interferometer Configurations

3.4.1 Mach-Zehnder (MZ)

Figure 3.5: Diagram illustrating the paths in a Mach-Zehnder interferometer.

First consider the case of a π
2 − π − π

2 Bragg-based Mach-Zehnder interferometer, in
the absence of rotation. In this case the acceleration on each path is given by

ãa(t) =
2nh̄k

m
[δ(t + T)− δ(t)]

ãb(t) =
2nh̄k

m
[δ(t)− δ(t− T)] (3.66)

and it can be seen that these satisfy our time symmetry requirement Eq. 3.33. The
space-time area is easy to calculate in this case:

A =
2nh̄kT2

m
(3.67)

so the interferometer phase becomes

∆Φ =
mg
h̄
· 2nh̄kT2

m
(3.68)

= 2nk · gT2 (3.69)

while the laser phase is
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φL = (nφ1 − nφ2)︸ ︷︷ ︸
from path 1

+ (−nφ2 + nφ3)︸ ︷︷ ︸
from path 2

(3.70)

= n (φ1 − 2φ2 + φ3) . (3.71)

With the inclusion of the Coriolis effect, and under the assumption that g and k are
parallel, the interferometric phase becomes

∆Φ = 2nk · (g− 2Ω× vi) T2. (3.72)

A Mach-Zehnder is sensitive to vibrations according to Eq. (3.47). In this case the
relative sensitivity to acceleration is given by

R(ω) =
4 sin2 (ωT

2

)
(ωT)2 (3.73)

which is plotted in Fig. 3.7 (a), and so the phase shift due to an acceleration a =
ac cos(ωt) is given by

δΦ =
mR(ω)

h̄
ac · A (3.74)

= 2nk · ac
4 sin2 (ωT

2

)
ω2 (3.75)

= 8nk · xc sin2
(

ωT
2

)
(3.76)

which on the last line has been rewritten in terms of the distance amplitude of the
vibration, xc = ac/ω2.

3.4.2 Continuous-Acceleration Bloch (CAB) sequence

In this case the acceleration along each path is given by Eq. 3.95 with the addition
of a constant Bloch acceleration along one arm at a time, during each half of the
interferometer,
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Figure 3.6: Diagram illustrating the paths in a CAB interferometer sequence. The
Bloch lattice is increasing (decreasing) in intensity for a time Tr after (before) each
Bragg kick. In the example here, the lattice is not unloaded and reloaded at

t ≈ ±T/2, unlike in the experimental configuration discussed in chapter 6

ãa(t) =
2nh̄k

m
[δ(t)− δ(t− T)] +

2nbh̄k
mτb

· (Tr − T < t < −Tr) · (−1)(t>−T/2)

ãb(t) =
2nh̄k

m
[δ(t + T)− δ(t)]︸ ︷︷ ︸
Bragg Kicks

+
2nbh̄k

mτb
· (Tr < t < T − Tr) · (−1)(t>T/2)︸ ︷︷ ︸

Bloch Oscillations

(3.77)

where nb is the number of Bloch oscillations, τb is the period for one Bloch oscillation,
and Tr is small time in which the atoms are loaded into the lattice and there is no
acceleration. In this expression I have used the notation (x < y) to mean a boolean
function which is 1 if the condition x < y is satisfied and 0 if it is not. The space-time
area in this case is calculated to be

A =

[
2nh̄kT

m
+

2nbh̄k(T − 4Tr)

2m

]
· T

=
2h̄kT2

m

[
n + nb

(
1
2
− 2Tr

T

)]
(3.78)
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so the interferometer phase becomes (in the absence of rotation)

∆Φ =
mg
h̄
· 2h̄kT

m

[
n + nb

(
1
2
− 2Tr

T

)]
(3.79)

= 2
[

n + nb

(
1
2
− 2Tr

T

)]
k · gT2 (3.80)

while the laser phase is

φL = (nφ1 − nφ2 − nbφb3 + nbφb4)︸ ︷︷ ︸
from path 1

+ (nbφb1 − nbφb2 − nφ2 + nφ3)︸ ︷︷ ︸
from path 2

(3.81)

= n (φ1 − 2φ2 + φ3) + nb (φb1 − φb2 − φb3 + φb4) . (3.82)

which implies that an interferometric fringe can be scanned out by changing the
phase of the Bloch lattices, as well as the Bragg pulses.

Since the Bloch acceleration is constant, we can write the number of Bloch oscillations
as nb =

T−4Tr
2τ , so the interferometric phase in Eq. (3.80) becomes

∆Φ =
mg
h̄
· 2h̄kT

m

[
n + nb

(
1
2
− 2Tr

T

)]
(3.83)

= 2
[

n +
T − 4Tr

2τ

(
1
2
− 2Tr

T

)]
k · gT2 (3.84)

= 2

[
n +

T
τ

(
1
2
− 2Tr

T

)2
]

k · gT2 . (3.85)

and when T � Tr we have

∆Φ = 2
[

n +
T
4τ

]
k · gT2 (3.86)

= 2nk · gT2 +
k · gT3

2τ
(3.87)

which shows the T3 sensitivity to acceleration g clearly. This can of course also be
written as
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Figure 3.7: (a) The relative sen-
sitivity R to an oscillating ac-
celeration with frequency ω is
plotted for the two extreme
cases: a Mach-Zehnder configu-
ration, which exhibits a ω2 roll-
off, and the T3 case, which ex-
hibits a ω3 roll-off. (b) The CAB
configuration has an interme-
diate sensitivity to vibrations,
which can look like either of the
two extremes depending upon
the ratio of Bloch oscillations
to Bragg diffraction recoils, nb

n .
Note that the CAB configura-
tion has double the number of
vibration frequencies to which
it is completely insensitive, as
compared to either of the ex-

treme cases.

∆Φ =

(
2nT2 +

T3

2τ

)
k · g (3.88)

The inclusion of the Coriolis effect (again under the assumption that g× k = 0) then
changes the interferometric phase to

∆Φ =

(
2nT2 +

T3

2τ

)
k · (g− 2Ω× vi) . (3.89)

The CAB scheme is sensitive to vibrations, again according to Eq. (3.47). In the limit
of T � Tr the relative sensitivity to acceleration is given by
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RCAB(ω) =
1

1 + ε

4 sin2 (ωT
2

)
(ωT)2 +

1
1 + 1

ε

64 cos
(

ωT
4

)
sin3 (ωT

4

)
(ωT)3 (3.90)

=
1

1 + ε
RMZ(ω) +

1
1 + 1

ε

RT3(ω) (3.91)

for ε = nb
2n . Thus as ε approaches zero, the noise sensitivity is that of a Mach-Zehnder,

whereas when ε is large, the noise sensitivity approaches that of a pure acceleration
separation between the arms of the interferometer, i.e. T3 sensitivity. All three cases
are illustrated in Figure 3.7.

The phase shift due to an acceleration a = ac cos(ωt) is given by

δΦ =
mRCAB(ω)

h̄
ac · A (3.92)

which for large ε is that of a T3 interferometer,

δΦ =
mRT3(ω)

h̄
ac · A (3.93)

=
64 cos

(
ωT
4

)
sin3 (ωT

4

)
ω3

k · g
2τ

. (3.94)

3.4.3 Butterfly configuration

A butterfly configuration is a π
2 −π−π− π

2 Bragg-based interferometer. In this case
the acceleration on each path is given by

ãa(t) =
2nh̄k

m

[
δ(t +

T
2
)− δ(t− T

2
) + δ(t− T)

]
ãb(t) =

2nh̄k
m

[
δ(t + T)− δ(t +

T
2
) + δ(t− T

2
)

]
(3.95)

The space-time area is easy to calculate in this case - it is zero, as one parallelogram
cancels the other. So this is a constant-acceleration-insensitive configuration, useful
for testing the effect of vibration noise in a system, as in Sec. 5.6. Due to the anti-
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Figure 3.8: Diagram illustrating the paths in a Butterfly interferometer sequence,
which is insensitive to constant accelerations.

symmetric nature of this configuration, the sine terms of a vibration now contribute,
while the cosine terms do not. Thus the relative acceleration sensitivity becomes

R∗(ω) =
|As(ω)|
|A∗| (3.96)

=
32 sin3 (ωT

4

)
cos

(
ωT
4

)
ωT2 (3.97)

(3.98)

which is plotted in Fig. 3.9. So the phase shift due to an acceleration a = as sin(ωt)
is given by

δΦ =
mR∗(ω)

h̄
as · A∗ (3.99)

= 2nk · as
16 cos

(
ωT
4

)
sin3 (ωT

4

)
ω2 (3.100)

≈ nk · asωT3

2
(3.101)

for small ωT.
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Figure 3.9: Diagram illustrating R∗, the relative sensitivity to vibrations of the but-
terfly configuration. This configuration is insensitive to constant acceleration, and at
higher frequencies its sensitivity rolls off as ω2. Inset: Same plot on a linear-linear

scale to show that the sensitivity goes to zero for a constant acceleration.

3.4.4 Recoil sensitive interferometers

Interferometer configurations in which ∆Φkin 6= 0 are in general also sensitive to the
recoil frequency ωrec =

h̄k2

2m , since

∆Φkin =
∫ T

−T
ω̃b − ω̃a dt (3.102)

= ωrec

∫ T

−T
ñ2

b(t)− ñ2
a(t) dt (3.103)

where ñi(t) is the number of photon recoils in the velocity along path i at a given
time t.

Consider the triangular configuration depicted in Figure 3.10. We assume that the
velocity along path a is zero in the inertial frame ṽa = 0, and the velocity along path
b is ṽb = ±v = ± 2nh̄k

m as shown in Fig. 3.10. Then the phase is given by

∆Φ = ∆Φkin + ∆Φinertial (3.104)

= ωrec

∫ T

−T
ñ2

b(t)− ñ2
a(t) dt +

m
h̄

∫ T

−T
g · ∆x̃ dt (3.105)

= 8n2ωrecT − 2nk · gT2 (3.106)
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Figure 3.10: Diagram illustrating the paths in an asymmetric, recoil frequency sensi-
tive interferometer sequence.

If we instead choose a constant acceleration separation between the two states, i.e.
the velocity goes as

ṽ(t) =


(t + T) a for t < − T

2
−(t) a for − T

2 < t < T
2

(t− T) a for t > T
2

then we have the interferometric phase

∆Φ =
m
h̄

(∫ T

−T
|v|2 ds + g · A

)
(3.107)

=
m
h̄

(
4
∫ T/2

0
|a|2 s2ds− g · a

4

)
T3 (3.108)

=
m
h̄

( |a|2
6
− g · a

4

)
T3 (3.109)

(3.110)

and so our sensitivity to the recoil frequency (which is now buried in |a|2) goes as
T3. For instance if the constant acceleration is due to nb 2h̄k-Bloch oscillations over
each time T/2, then a = 4nb h̄k

mT , and the phase becomes

∆Φ =
8
3

n2
bωrecT − nbk · gT2 (3.111)

=

(
2
3

ωrec

τ2
b
− k · g

2τb

)
T3 (3.112)

where on the last line we have substituted nb = T
2τb

for a constant time τb for
each Bloch oscillation. As we keep higher derivatives of position (let’s say the p-th
derivative) constant, the space-time area will increase as Tp+1, whereas the recoil-
dependant term will increase as T2p−1.
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To build an acceleration-insensitive configuration you can put two of these back to
back in such a way as to cancel the acceleration signal as in Ref. [106]. It is also
possible to put them together in such a way as to cancel the recoil phase shift instead,
and this is equivalent to a Mach-Zehnder with twice the momentum splitting.



Chapter 4

Dual-Species 87Rb/85Rb BEC
Machine

Atom interferometry requires a source of atoms. In our experiments, the two natu-
rally abundant isotopes of Rubidium are our atoms of choice. One reason for this
choice is the availability of cheap laser diodes (produced en-mass for CD drives) at
the correct wavelength for the D2 transition at 780 nm in both isotopes [2]. Rubidium-
87 also has favourable scattering properties for thermalisation during evaporative
cooling, with an s−wave scattering length of ≈ 100 a0 [75, 167], and a low three-
body recombination rate which would cause an unwanted loss of atoms at high
density. These properties make 87Rb one of the most common species of atom for
Bose-Einstein condensation.

Rubidium-85 is more difficult to evaporatively cool, with a background s-wave scat-
tering length of −443 a0 and a higher three body recombination rate. Having a BEC
of 85Rb is advantageous as its scattering length is variable through the use of a Fes-
hbach resonance at a magnetic field of 155 G. This has many advantages for atom
interferometry which will be explored in Chapter 7. A difficulty in the evaporative
cooling of 85Rb is that the s−wave contribution to the scattering length dissapears
at a temperature of ≈ 350µK [37], which precludes efficient self-evaporative cooling
through this temperature. One option for condensation of 85Rb would be to tune the
Feshbach resonance so that it can evaporatively cool itself [56, 160]. Since the three-
body recombination rate is much higher, this leads to larger losses at the densities
required for condensation.

We choose instead to use a sympathetic cooling process [182, 9, 27] whereby Rubidium-
87 atoms cool the Rubidium-85 atoms via inter-species interactions which occur with
an s−wave scattering length of 213 a0 [38]. This method has the advantage that dur-
ing radio-frequency forced evaporative cooling the Rubidium-87 atoms are preferen-
tially removed from the trap, ensuring no loss of the 85Rb while 87Rb is still present.
If the process is sufficiently efficient, we can stop the evaporation with a condensate

67
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Property 85Rb 87Rb

Mass m (amu) 84.911789732(14) [34] 86.909180520(15) [34]
Mass m (kg) 1.410×10−25 1.443×10−25

D2 Transition Wavelength λ0 780.241 nm [248]
D2 Transition Linewidth Γ 2π × 6.067MHz [241, 109]

Table 4.1: Important properties of the D2 line in Rubidium [226].

Function 85Rb 87Rb Detuning from resonance

2D Trapping 30mW 120mW −20MHz
3D Trapping 50mW 100mW −22MHz
2D Repump 30mW 60mW 0MHz
3D Repump 20mW 50mW 0MHz

Push beam 200 µW 500 µW −15MHz 85Rb
−20MHz 87Rb

Imaging 1mW 1mW −12MHz to +12MHz

Table 4.2: Laser power available on the Science table and the frequencies used dur-
ing the MOT loading stage, reported as detuning from the relevant closed cycling

transition in that isotope.

of each isotope co-existing in the trap. The use of this combination of isotopes for
common-mode noise cancellation and precision measurement will be investigated in
Chapter 8.

4.1 Laser System

The laser system we use to make BEC requires two sets of frequencies, one for 85Rb
and one for 87Rb. For each isotope, imaging, trapping and push beam light are all
generated from the master laser. These are all near-resonant to the closed cycling
transition for that isotope. In 87Rb the closed cycling transition is |F = 2, mF = 2〉 →
|F′ = 3, m′F = 3〉 and in85Rb it is |F = 3, mF = 3〉 → |F′ = 4, m′F = 4〉. We generate
both sets at the same time, by detuning the 85Rb light before locking it so that is is
the same ∆ f = −212 MHz away from where it needs to be as the 87Rb (See Table 4.2).

The 87Rb Master laser is locked to the cross-over peak halfway between the |F = 2〉 →
|F′ = 1〉 and |F = 2〉 → |F′ = 3〉 transition in 87Rb [See Fig. 4.1 (b)], which is 212 MHz
below the latter transition. The 85Rb master laser has a double-pass Acousto-Optic
Modulator (AOM) detuning the light by 151 MHz to the blue before it is locked to
the cross-over peak halfway between the |F = 3〉 → |F′ = 3〉 and |F = 3〉 → |F′ = 4〉
transition [Fig. 4.1 (c)], leaving the master 85Rb also locked 212 MHz away from its
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Figure 4.1: (a) This is a scan of the D2 line at 780 nm in a natural abundance mixture
of Rubidium gas in a vapour cell. The use of saturated absorption spectroscopy
(SAS) means that an individual transition turns up as a narrow peak which is a lack
of absorption, against the background of the Doppler-broadened absorption profile.
(b-e) Zoomed insets with transitions labelled. Crossovers (co) are artefacts of SAS
and they occur halfway between two actual transitions. Error signals [blue, lower
lines in (b-e)] are approximately the derivative of the transmission signal. We lock to

the peaks by staying at the negative-slope zero crossings of the error signal.
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Figure 4.2: This schematic shows the laser system developed for the dual-isotope
Rubidium BEC machine. One repumping laser is used for each isotope. Each isotope
also has one master laser which is split between trapping, imaging and push beams.
The repump and trapping beams go through a tapered amplifier in order to generate
a larger amount of power to enable a larger trapping volume for the MOTs. All
generated laser frequencies are fibre-coupled to the science table. The Fabry-Perot
cavity is used to check that the slave laser diodes are each operating in a single mode.
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cycling transition, |F = 3〉 → |F′ = 4〉. Each master diode laser has around 40 mW
of light available after the isolator. For each push beam (which sends the atoms
from the 2D into the 3D MOT) ≈ 1 mW is picked off from the master laser and tuned
appropriately (detunings shown in Table 4.2) through a double-pass AOM setup. For
each imaging beam ≈ 5 mW is picked off and sent through a double-pass AOM to set
the frequency to be anywhere between 0-12 MHz (0-2 linewidths) detuned either side
of the cycling transition, depending upon the imaging requirements. The remaining
part of each master laser beam is used to injection-lock a free-standing laser diode
to the same frequency. These “slave” beams for 85Rb and 87Rb are then combined
on a non-polarising beam-splitter to produce two combined outputs. Each of these
outputs goes though a separate tapered amplifier producing around 1 W of each,
before being detuned though a double-pass AOM setup. One of these amplified
beams is then used for the 2D MOT trapping light, while the other is used for the
3D MOT trapping light. The light from each isotope can be detuned by the same
amount due to the AOM in the locking loop of 85Rb which was described earlier.

The repumping laser for 87Rb is locked to the cross-over peak halfway between the
|F = 1〉 → |F′ = 1〉 and |F = 1〉 → |F′ = 2〉 transition [See Fig. 4.1 (e)], which is
detuned by 78.5 MHz from the |F = 1〉 → |F′ = 2〉 repumping transition in 87Rb.
The repumping laser for 85Rb is locked to the cross-over peak halfway between the
|F = 2〉 → |F′ = 1〉 and |F = 2〉 → |F′ = 2〉 transition in 85Rb [Fig. 4.1 (d)], which
is conveniently 78.1 MHz away from its |F = 2〉 → |F′ = 3〉 repumping transition.
As the two detunings are much the same, we then combine the light and pass it
thorough a single tapered amplifier. After this the light is split into two separate
beams, one for the 2D MOT and one for the 3D MOT. Each beam is modified in
frequency by ∼ 78 MHz when it goes through a single-pass AOM to bring it back to
resonance and control its amplitude.

All the light generated on the optics table is fibre-coupled to the Science table in
single-mode polarisation-maintaining optical fibres. The amount and detuning of
each beam which is available on the Science table is given in Table 4.2. See also the
schematic of the optics layout in Figure 4.2.

4.2 Science Table

The experiments described in this thesis were performed in a vacuum system (shown
in Figure 4.3) which was designed by P. A. Altin, and is well described in his the-
sis [5]. It has a high pressure end (≈ 10−7 torr) where the rubidium is sourced in a
2D Magneto-Optical Trap (2D MOT), and a low pressure end (≈ 10−10 torr) where it
is collected in a 3D MOT and subsequently cooled to BEC. The rubidium is obtained
from an alkali metal dispenser [1] which, when a current of ≈ 3 A is run through it,
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sublimes rubidium vapour with the natural abundance ratio of 2/3 85Rb to 1/3 87Rb.

In the 2D MOT, the magnetic coils are wrapped in a racetrack configuration around
the glass cell as shown in Fig. 4.3 (a). Running 10 A through these coils generates
a quadrupole field radially and an elongated region of zero field axially down the
centre line. Trapping and repump beams for each isotope are retro-reflected along
the x and z axes over a long region of the y axis. The red-detuned push beam (also
2-frequencies) encourages the atoms to move down the axis of the 2D MOT, through
an impedance, and into the 3D MOT chamber.

The 3D MOT is formed from three retro-reflected beams directed along x-y, y-x and
z respectively, as shown in Fig. 4.3 (b). The coils are electrically connected in series
in an anti-helmholtz configuration in order to generate a quadrupole magnetic field,
and are run with 4.5 A current with only passive air cooling. We load atoms into
the 3D MOT for approximately 10s to achieve a load of approximately 5× 108 87Rb
atoms and 3× 106 85Rb atoms. As the 85Rb is a heat load on the sympathetic coolant
of 87Rb, it is important to ensure that there is much less 85Rb present in the 3D MOT.
This is done by only turning on the 85Rb push beam late in the 3D MOT loading
process, about 0.5 s before the end of the load.

At the end of our MOT loading stage we perform Polarisation Gradient Cooling
(PGC) [60]. Over 25 ms we smoothly detune the 3D MOT trapping light from−22 MHz
to −95 MHz, while simultaneously ramping off the quadrupole magnetic field, and
the amplitude of the repump and trapping light. Immediately thereafter we catch
the cooled atoms again in the quadrupole magnetic field by switching it on to 10 A
and compress them by ramping it up over 10 ms up to its maximum current of 15 A
which produces a gradient of ≈ 300G/cm. We also ramp on the crossed-beam opti-
cal dipole trap over a second. The crossed-beam optical dipole trap is formed from
two laser beams intersecting at a 30o angle. The waveguide beam has 16 W of power
at 1064 nm with a linewidth of 1MHz and a waist of 60 µm. The cross beam has
12 W of power at 1090 nm with a linewidth of 2 nm and waist 100 µm. The hybrid
magnetic-quadrupole/optical-dipole trap provides a potential minimum slightly be-
low the quadrupole trap’s magnetic field zero [155] which somewhat avoids loss due
to spin-flips at the bottom of the trap. Approximately 1/2 of the MOT atoms are
caught here in the target states of |F = 1, mF = −1〉 for 87Rb and |F = 2, mF = −2〉
for 85Rb. The remainder are either magnetically repelled from the trap or simply
untrapped as they are in the wrong mF state. We now apply radio-frequency evapo-
rative cooling to further cool the mixture of atoms. Because of the magnetic moments
of each isotope, 87Rb is selectively evaporated and so 85Rb (which is confined more
tightly in the magnetic potential) is sympathetically cooled without loss in this stage.
This process, which takes ≈ 9.5 s, is described in depth in the thesis of P. A. Altin [5].
We slowly ramp off the quadrupole trap, leaving the atoms in the crossed-beam op-
tical dipole trap. Now we have around 3× 106 87Rb atoms, and 4× 105 85Rb atoms
loaded into the crossed-beam dipole trap at a temperature of around a micro-Kelvin.



§4.2 Science Table 73

Figure 4.3: Centre: The vacuum system with some key components shown. (a) The
source of Rubidium is an alkali vapour dispenser in the 2D MOT cell. The 2D MOT
collects the atoms in a line down the centre of the cell from where they are pushed
though the vacuum impedance by a push beam into the science cell, which is held
at a lower pressure. (b) Here, the atoms are collected and cooled in a 3D MOT. Af-
ter the 3D MOT is fully loaded with atoms, polarisation gradient cooling is applied,
followed by radio-frequency evaporative cooling in the quadrupole magnetic trap.
(c) Finally the atoms are transferred to a crossed-beam optical dipole trap. Lowering
the intensity of this optical trap provides a final stage of evaporative cooling. Af-
ter the atoms are held in the optical dipole trap, the direction of current in one of
the quadrupole coils can be flipped, so that the coils now produce a near-uniform
magnetic field at the location of the atoms. This allows manipulation of the 85Rb

Feshbach resonance.
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Figure 4.4: This figure shows the orientation of the crossed-dipole trapping beams
with respect to the glass cell and Quadrupole/Feshbach coils.

At this point in the run, with the primary magnetic field coils off, we switch the
primary coils from an anti-helmholtz to a helmholtz configuration using a H-bridge
solid state relay array. This helmholtz configuration now provides a (near) constant
magnetic field bias1 across the whole cloud, which we use to tune the scattering
length of 85Rb throughout its Feshbach resonance at B=155 G. This stage is depicted
in Fig. 4.3 (c). Now we slowly lower the intensity of the cross-beam optical dipole
trap to provide a further stage of evaporative cooling. In the case that we have loaded
both species into the trap, the 85Rb is again sympathetically cooled, this time less
selectively but due to the difference in mass (and hence gravitational sag) between
the two species.

Depending upon the ratio of isotopes that we started with, we now have either a
condensate of 85Rb, a condensate of 87Rb, or a mixture of both. We can also adjust
the final ratio inefficiently by changing the stop of the r.f. evaporation sweep. We
find the largest 85Rb condensates are formed by holding the scattering length of 85Rb
at 300 a0 for most of the 2.5 s dipole evaporative cooling, and then at 100 a0 for the
last 0.5 s. This indicates that in this stage, the 85Rb is acting as its own coolant and
is no longer being significantly sympathetically cooled. The final cross-beam dipole
trap has an axial trapping frequency of 3 Hz < fz < 9 Hz depending upon the chosen
parameters, and a radial trapping frequency of around fz ≈ 70 Hz. The largest pure
85Rb BEC we have formed at this stage has 2× 104 atoms, and the largest pure 87Rb
BEC we have formed in this configuration has 2× 106 atoms. Mixtures of the two
isotopes will tend to have less of each.

1As the coils were designed for a quadrupole trap, the “constant” field actually has a small repulsive
curvature, as measured in Section 7.1, with the results displayed in Fig. 7.3.
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Figure 4.5: This plot shows the number of 87Rb atoms remaining in the optical waveg-
uide over time, indicating an exponential decay with a lifetime of ≈ 3 s.

Next the atoms are loaded into the waveguide. Our waveguide is formed from one of
the crossed dipole trap beams. To load, we ramp up the waveguide beam’s intensity,
while ramping down the cross beam’s intensity such that the waveguide is sufficient
to hold the atoms against gravity by itself. Simultaneously, the scattering length of
85Rb can be ramped to a desired value, for example to zero. In the case of a pure
87Rb condensate, the Feshbach coils are not required and remain off. In Fig. 4.5, the
number of 87Rb atoms remaining in the waveguide as function of time is plotted.
This data shows an exponential decay in the number of atoms remaining with a
decay constant of around 3 seconds.

We can fine-tune the tilt of our waveguide at this stage by adjusting the tilt of the
optics table upon which the experiment rests. The table is supported by four air-
filled sacs to absorb vibrations, and we can pump these up to varying degrees using
a hand-held bicycle pump. Using this technique we adjust the level of the table
so that the atoms do not slide to one side or the other when they are held in the
waveguide for various lengths of time.

4.3 Optical Lattice Beams

Our optical lattice beams are brought in to the condensate along the same path as the
waveguide trapping beam, with the use of dichroic mirrors which reflect 780 nm light
but allow 1064 nm light to pass. This is shown schematically in Figures 4.6 and 4.7.

We have up to 60mW of optical lattice light in each of two counter-propagating
beams. These are aligned collinear with the waveguide in a two-step process. First,
the small fraction of waveguide light which reflects off the dichroic mirror (see
Fig. 4.7) is back coupled into the optical fibre which one of the lattice beams comes
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Figure 4.6: The laser beams used to generate optical lattices are brought in along the
same path as the waveguide by using dichroic mirrors (DM). To image the results of
our experiment, we have two imaging beams which pass through the location of the

atoms, and are focussed upon separate cameras (not shown).

Figure 4.7: Our Bragg laser system consists of two counter-propagating 780nm beams
aligned co-linear with the waveguide and detuned from one another on the order of
tens of kHz. The beam from an external cavity diode laser detuned by ∼ 130GHz
from the D2 line of 87Rb (as measured using a HighFinesse WSU Wavemeter) is
used to seed a tapered amplifier (TA). The output from the TA is split between two
acousto-optic modulators (AOM) by a polarising beam splitter (PBS) with a half-wave
plate (λ/2) for frequency and amplitude control. Each AOM is driven near 80MHz by
one of two amplified, phase-locked channels from a direct digital synthesiser (DDS,
Spincore PulseBlaster). The modulated beams are coupled into separate optical fibres
which bring the beams near to the atoms. Dichroic mirrors (DM) are then used to

align these Bragg beams counter-propagating and co-linear with the waveguide.
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from. Secondly, the other lattice beam is coupled into the same optical fibre. The
lattice beams are collimated with a full 1

e2 width of 1.85mm and detuned 105 GHz to
the blue from the |F = 1〉 → |F′ = 2〉 transition of the D2 line in 87Rb, which keeps
the number of spontaneous emissions below 1% of our total atom number during our
interferometric sequence. Arbitrary, independent control of the frequency detuning
and amplitude of each beam is achieved using a direct digital synthesizer.

After ballistic expansion of the cold atom cloud, we look at atom density using ab-
sorption imaging, as described in Section 2.8.2. In the case that we are taking a series
of data for an interferometry run, we will make use of the following Fourier de-
composition algorithm to analyse the series of images collected for each interference
fringe.

4.4 Fourier Decomposition Algorithm

We process the data we take for an interferometric sequence in the following way.
For each run, an interferometric pulse sequence is applied to the atoms, and a pic-
ture is taken which shows the spatial distribution of atoms after the interferometric
sequence and an expansion.

A simple method to count the atoms in each state is to draw a box around the area
where each state is expected and count the atoms in each box for each phase φ3. To
avoid counting non-contributing pixels in our image, which would add unnecessary
noise, we use a Fourier phase decomposition algorithm to select which pixels we
attribute to each momentum state. For each pixel i in our absorption image we
calculate the number of atoms it contains as a function of recombination phase at the
end of the interferometer, ni(φ3). We then take the inner product with sinusoids of
the expected periodicity

αi =
∫ 2π

0
ni(φ3) · sin(mφ3)dφ3

βi =
∫ 2π

0
ni(φ3) · cos(mφ3)dφ3

(4.1)

where, for example, m is 2 for a 4h̄k transition. Any oscillatory signal in ni(φ3) of the
correct frequency such as ni(φ3) = Ai cos(mφ3 +Φi) can be extracted by the relations

Ai = 2
√

α2 + β2

Φi = tan−1(
αi

βi
)

(4.2)
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Figure 4.8: Improvement in phase uncertainty by using the Fourier decomposition
algorithm.

For a small phase offset (Φi ≈ 0 for the 0h̄k state) it is sufficient to simply plot βi, as
|βi| ≈ Ai and sign(βi) ≈ cos(Φi), and this has been done in Fig. 5.3. Ideally, two
identifiable components will be visible in an image, the 0h̄k momentum state with
Φ ≈ 0 (with positive amplitude, shown in red) and the 4h̄k momentum state with
Φ ≈ π (negative amplitude, blue). From this image we select which pixels to include
in our regular counting of N0h̄k and N4h̄k for all φ3 by setting a tolerance on βi. The
optimal tolerance will depend upon the background noise in the image.

The resulting images are shown in Figure 5.3. Comparing this Fourier decomposition
method to an optimally chosen box, for the results discussed in Section 5.4 we find
a 56% increase in visibility and a 65% reduction in phase uncertainty at 2T = 2.5ms,
with the best improvement at longer T and higher phase noise, demonstrating the
utility of this method. This is illustrated in Figure 4.8.
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Chapter 5

Optically Guided Interferometry

Some of the work in this chapter has been published in:

Optically guided linear Mach-Zehnder atom interferometer
G. D. McDonald*, H. Keal, P. A. Altin, J. E. Debs, S. Bennetts, C. C. N. Kuhn, K. S.
Hardman, M. T. Johnsson, J. D. Close, and N. P. Robins.
Phys. Rev. A 87, 013632 (2013).

Atom Interferometry in an Optical Waveguide,
Honours Thesis by Hannah Keal, October 2012, Australian National University.

5.1 Why guided interferometry?

Guided interferometers have the advantage of being able to constrain the atom’s
motion in two dimensions while being able to conduct a freely-propagating interfer-
ometer in the remaining dimension. This is an example of a defined-axis sensor. For
example, one could construct a gravitationally sensitive interferometer in the hori-
zontal plane, suspended against the Earth’s gravity, to measure the tidal influence of
the sun and moon in the horizontal direction. Alternatively one could measure the
difference between the gravitational acceleration with and without a well-callibrated
mass present [201], to determine the gravitational constant G in the expression

Fgrav =
Gm1m2

r2 . (5.1)

An acceleration-sensitive configuration could measure the horizontal acceleration for
the purposes of dead-reckoning (e.g. submarine navigation) in a smaller package as
compared with a free-fall geometry which requires a vertical height equivalent to the

81
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fall time.

A disadvantage of this configuration is, ironically, the strong coupling to the envi-
ronment provided by the transverse confinement of the waveguide. This will allow
excess vibrational noise to couple in to the interferometer itself.

5.2 Magnetic Waveguides

Over the past decade there has been significant interest in the application of Bose-
Einstein condensates (BEC) to the development of compact inertial sensors based on
magnetically guided ultra-cold atoms [87, 80]. Trapped atom systems offer the pos-
sibility of the ultra-high precision sensing demonstrated by free-space atom interfer-
ometry [209, 239] in a more compact package. Atoms can now be Bose-condensed
[210, 181, 113, 120], guided [137, 151], split [65, 43, 118], switched [171], recombined
[237] and imaged [125, 220] in reconfigurable magnetic potentials which support
the atoms against gravity. Typical geometries for magnetically trapped atom in-
terferometers use either atoms bound to a trap which is adiabatically deformed
[216, 217, 128, 214] or a magnetic guide in which atoms are manipulated using a
standing wave [90, 245, 242, 246, 232].

Precision in these schemes is usually limited by both the roughness of the magnetic
waveguide potential which causes decoherence and fragmentation of the condensate
[213, 130, 152, 86], as well as interaction induced dephasing due to the tight trapping
potentials used in magnetic guiding [47, 121, 147]. Methods used to address these
problems have included a Michelson configuration which is only sensitive to relative
acceleration between the two arms [242, 132], a constant displacement scheme with
an inherently reduced scaling in sensitivity to absolute accereration [232], or trap-
ping currents oscillating in the kHz range which smooths the potential but causes
unwanted heating [238, 33]. The impact of these problems has been highlighted in
Ref. [161].

5.3 Optical Waveguide

An alternative solution using optical trapping and manipulation of ultra cold atoms
has the advantage of being inherently smooth. Optical elements have been con-
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structed which guide [29, 105, 91, 61], reflect [79, 46] and split [123, 92, 73] atom
clouds. Recently, a ring interferometer has been constructed to measure rotation
[161]. Additionally, relatively large BECs can be quickly produced in optical traps
(105 atoms in 500 ms [53]) and the atoms in an optical trap can be confined in any
internal state, allowing the trapping of magnetically insensitive ensembles [8].

In this chapter we present the first linear, optically guided atom interferometer in an
inertially sensitive configuration. A BEC of 87Rb is loaded into an atomic waveguide
constructed from a far-detuned optical dipole beam (Fig. 5.1). The atoms are then
transferred into the first-order magnetically insensitive |F = 1, mF = 0〉 spin state.
A Mach-Zehnder (MZ) atom interferometer with 4h̄k momentum splitting is con-
structed using counter-propagating Bragg beams aligned co-linear with the waveg-
uide.

The first version of the optical waveguide beam had transverse and axial frequencies
of 114Hz (measured by exciting a trap oscillation) and 1Hz (calculated from the beam
properties) respectively, and is on a tilt of less than 1◦ with respect to gravity. Con-
sequently the atoms slowly accelerate out of the field of view of our vertical imaging
system (≈ 3mm) after around 100ms. We observed the condensate expanding along
the waveguide for times on the order of 0.5s (Fig. 5.1) by using a 6h̄k Bloch lattice
acceleration up the slight incline and observing the atom cloud as it falls back down
the waveguide. The structure visible on the images in Figure 5.1 is largely due to
classical noise on our imaging system.

After the BEC is released into the waveguide, we allow it to expand axially for 20ms to
reduce any mean-field effects which may be present due to inter-particle interactions
at higher density [63]. After expansion we measure the momentum width in the
directions axial and transverse to the waveguide to be 0.8h̄k and 0.2h̄k respectively.
Using time of flight observations we have determined that the majority of the atoms
occupy the transverse ground state of the waveguide [135].

While the BEC expands along the waveguide a constant magnetic field of 30 Gauss
is applied by a pair of Helmholtz coils to define the spin axis. During this time
the atoms are transferred into the first-order magnetically insensitive |mF = 0〉 state
using a Landau-Zener radio frequency sweep. We can verify that the atoms are in
the |mF = 0〉 state by hitting the cloud with a short magnetic pulse, knocking them
out of the waveguide if they are in the |mF = −1〉 state but leaving them trapped if
they are in the |mF = 0〉 state.



84 Optically Guided Interferometry

Figure 5.1: (a) The geometry of the first iteration of the optically guided atom inter-
ferometer. A BEC is formed in an optical dipole “triple trap" at the intersection of
three far-detuned beams. Two of these are switched off to release the atoms into the
third beam, the waveguide. A MZ atom interferometer is constructed using Bragg
transitions from counter-propagating beams aligned along the waveguide. We image
the resulting momentum states using a vertical absorption imaging system. A second
absorption imaging system, not shown in this diagram, has its axis in the horizontal
plane between the cross and waveguide dipole beams. (b) Images showing expansion
of the condensate in the waveguide after different expansion times. Because gravity
slowly pulls the atoms out of the field of view of our imaging system, the image after
520ms expansion is of a condensate thrown ‘up hill’ by a 6h̄k Bloch acceleration, and

then allowed to fall back into the field of view.
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5.4 Optically Waveguided Interferometer

We use Bragg transitions to coherently split, reflect and recombine our atomic wave-
packet in momentum along the waveguide to construct a Mach Zehnder (MZ) in-
terferometer. Our Bragg setup is shown schematically in Figure 4.7. For counter-
propagating beams, an nth order Bragg pulse which imparts 2nh̄k momentum to the
kicked atoms, has a resonance condition (see Section 2.7.6.1) given by ∆ f = nh̄k2/mπ,
where k is the wavenumber of the light and m is the mass of the atoms. We use
∆ f = 30.3kHz to effect second order Bragg transitions. We use gaussian laser pulses
to achieve optimal momentum state coupling efficiencies [233, 172]. It is important
that the waveguide beam and the Bragg beams are perfectly collinear. If not, the
atoms which have been kicked by a Bragg transition will develop a helical wiggle as
shown in Fig. 5.2, which will cause mismatch at the output of the interferometer. For
this reason we align the Bragg beams in a two-step process. First, one Bragg beam is
aligned by coupling the small fraction of the waveguide beam going the wrong way
on the dichroic mirror back into the Bragg fibre outcoupler. Then, the other Bragg
beam is adjusted so as to couple it into the same fibre outcoupler.

Using these Bragg transitions we build a Mach-Zehnder atom interferometer, which
is schematically illustrated in Figure 3.5. First a π/2 pulse is applied to coherently
split the atoms into two momentum states, one initially stationary at 0h̄k, the other
travelling at 4h̄k. After a time T we apply a π pulse to invert the two momentum
states. After another period T, the two halves of the atomic wave packet are over-
lapped again and we apply a second π/2 pulse to interfere the two states. This
completes the interferometer sequence.

To measure the acquired interferometric phase, we allow these final states to separate
along the waveguide for (35− 2T)ms, then switch off the waveguide. Another 5 ms
of ballistic expansion allows us to avoid lensing of the imaging light by the narrow,
dense cloud of atoms. Using absorption imaging we count the number of atoms in
each momentum state. To remove the effect of run-to-run fluctuations in total atom

Figure 5.2: Overlaid images after a 2h̄k Bragg kick and various propagation times in
the waveguide up to 40 ms, to show the effect poor alignment can have on waveg-
uide propagation. A helical oscillation in the waveguide becomes visible after it has
rotated to be in the plane of the imaging system after a few hundred micrometers of
propagation. This data was taken in version two of the waveguided interferometer
setup. As the oscillation has a period of roughly 13 ms, this means that the transverse
oscillation frequency in the waveguide (at this particular intensity level) is ≈ 77 Hz.
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number, we look at the relative atom number in the 0h̄k state

Nrel =
N0h̄k

N0h̄k + N4h̄k
(5.2)

This should be an oscillatory function of phase, of the form

Nrel =
V
2

cos (Φ) + offset (5.3)

where the visibility V of the fringe is the amplitude of the sinusoidal fit, and the
offset is ideally 1

2 . The phase Φ of the MZ atom interferometer can be found by
combining equations (3.69) and (3.82), and is given by

Φ = 2nk · aT2 + n(φ1 − 2φ2 + φ3) (5.4)

where k is the wavevector of the light used in the nth order Bragg transitions, a is
the acceleration experienced by the atoms from external forces, T is the time between
pulses in the interferometer of total length 2T and φj is the phase of the jth Bragg
laser pulse. Running the interferometer with constant frequency difference between
the two Bragg beams will have two drawbacks. Firstly, the interferometer will quickly
acquire a phase shift of many multiples of 2π, and secondly, the Bragg beams will
become non-resonant with the desired momentum kick as the atoms fall faster and
faster under gravity. To compensate this, the laser frequency difference is swept at a
rate α = dω

dt = d2φ
dt2 which couples in via the laser phase to finally give the expression

Φ = n(2k · a− α)T2 + n(φ1 − 2φ2 + φ3) (5.5)

Tuning the interferometer phase Φ to near zero using α, we can measure the com-
ponent of acceleration along k. We will demonstrate this by measuring the small
residual component of gravity along the near-horizontal waveguide. Measured by
time-of-flight imaging, this small residual acceleration is approximately 0.10m/s2 in
this instance. One of the Bragg beams is then swept by α = 2π × 258Hz/ms in the
laboratory frame so as to remain resonant, with no Doppler shift, in the frame of the
atoms.

By scanning the relative phase φ3 of the final π/2 pulse, we obtain fringes in Nrel ,
and these are shown in Fig. 5.3. We obtain a visibility V of 38% at 2T = 1ms
and 15% at 2T = 2.5ms. By 2T = 3ms, phase noise effectively randomises the
final phase of the interferometer, but interference is still seen in the contrast of the
interferometer, which is defined as the spread of data in Nrel. Even at 2T = 7ms we
still have interference with contrast of ≈ 37%, albeit with random phase and hence
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Figure 5.3: We obtained fringes in Mach-Zehnder configuration with 4h̄k momentum
splitting. Measured fringes (red circles) and a sinusoidal fit (blue line) of the form
Nrel =

V
2 cos(2φ3 + Φ) + c for (a) 2T = 400µs and (b) 2T = 2.5ms. The density plot

next to each fringe is a Fourier component of our absorption images for all recombi-
nation phases φ3 (see text), and shows the sections of our absorption images which
contribute to each state of the interferometer. The 0h̄k (red atom cloud) and 4h̄k state
(blue atom cloud) are separated by 870µm. (c) Visibility V (red circles) as measured
by the sinusoidal fit to each fringe set. Contrast (black diamonds) as measured by
range of data Nrel from the 2nd percentile to the 98th percentile, is shown for com-
parison to indicate possible gains in fringe visibility after the elimination of phase

noise.

no possibility of an acceleration measurement.

5.4.1 Phase Noise

The phase instability observed at longer interferometer times is likely due to acoustic
vibrations affecting the optical fibre out-couplers which bring the Bragg beams to
the table. By looking at the beat between our Bragg beams on a low-frequency
spectrum analyser we see a significant noise peak between 130Hz and 200Hz in our
laboratory. We can consider the effect of vibrations by using the formalism developed
in Chapter 3. The phase shift caused by vibrations (those which are even in time with
respect to the space-time area of the interferometer) is given by Eq. (3.76),

δΦ = 8nk · xc sin2
(

ωT
2

)
(5.6)

For a vibration frequency of 170 Hz, and an interferometer time of T = 2 ms, a pos-
sible 2π phase shift will be caused by a fluctuation in the distance between the two
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Bragg fibre couplers of as little as 60 nm.

We calculate the fluctuations in Bragg beam intensity to contribute 1/300th of the
measured uncertainty in acceleration, so this was not yet limiting our sensitivity.
Run-to-run fluctuations in atom number would not be expected to greatly affect the
sensitivity, however the loss of contrast seen in Fig. 5.3 (c) may be due to residual
inter-particle interactions [180].

The highest sensitivity to acceleration along the guide that we obtained in the first
iteration of the interferometer is ∆a = 7× 10−4m/s2 at 2T = 2.5ms over 136 runs (9×
10−2/

√
Hz), and we obtain an acceleration of a = 0.0997(7)m/s2. For comparison,

a free space gravimeter run in the same lab [63] had an acceleration sensitivity of
5× 10−4m/s2 at 2T = 6ms over 30 runs (3× 10−2/

√
Hz).

The similar results obtained for both the free space and guided interferometer in-
dicated that it was likely that by vibrationally isolating the sensor and Bragg laser
system from the mechanical noise present in our laboratory we could achieve signif-
icantly higher sensitivity. Thus, one of the changes we made in the second iteration
of the machine is that we vibrationally isolated the optical benches the experiment
is constructed upon, as well as removing all sources of acoustic and electronic noise
from the room in which the experiment was conducted. This achieved significant
gains in sensitivity, as will be seen in subsequent chapters.

The quantum projection noise limit on acceleration sensitivity for this type of sys-
tem is given by ∆a = 1/

√
NkT2 where N is the total number of atoms involved in

several runs of the experiment [8], and the visibility is assumed to be V = 1. For
our longest waveguide propagation time of 2T = 520ms this limit is an enticing
∆a = 4× 10−11m/s2 (2× 10−9/

√
Hz). In this hypothetical interferometer we would

have a maximum displacement between the atom clouds of 3.6mm, or 10% of the
Rayleigh length in either direction and the resulting change in waveguide intensity
experienced by the atoms will be less than 1%.

5.4.2 Summary

In summary we have demonstrated a proof-of-principle acceleration sensor based
upon Bragg interferometry in an optical waveguide. Our Mach-Zender configura-
tion atom interferometer is sensitive to acceleration along the waveguide axis. As
the atoms are optically trapped we are able to operate the interferometer with atoms
in the first-order magnetically insensitive |F = 1, mF = 0〉 internal state. We have
demonstrated clean propagation in the optical waveguide without fragmentation for
more than half a second. In the future, this single axis system could be readily
adapted to produce a multi-axis inertial sensor by including two additional orthogo-
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Figure 5.4: The arrangement of optical beams allowing the green potential barrier
and waveguide into the science chamber. Gravity lies along the negative z-axis in

this figure.

nal waveguide atom interferometers.

5.5 Repulsive optical barrier as a horizontal mirror

The blue-detuned repulsive optical barrier in Sec. 2.7.1 was reimplemented as a hor-
izontal mirror in our optical waveguide as shown in Fig. 5.4 and Fig 5.5. This time
a lens with a focal length of 5 cm was used to bring the green λ =532 nm beam to
a tight focus at the position of the waveguide, but not on top of the position BEC.
The beam was brought into the cell along the vertical imaging path in the opposite
direction, through the use of a dichroic mirror.

This allowed a simple alignment technique, described as follows. First, a picture of
the waveguide’s position would be taken by allowing the atoms to expand in the
waveguide. This line would be marked on screen with a whiteboard marker. Then,
a picture of the MOT with the green beam applied would be taken, in which a small
dot with no atom density is seen, at the location of the green beam. The alignment
mirrors would be adjusted to bring this spot in line with the waveguide (as seen by
the line drawn on the screen). The imaging light was refocussed by an f=10cm lens
as shown in Fig. 5.5, in a telescope configuration, before hitting the imaging camera.

By replacing the Bragg mirror with the repulsive optical barrier blue detuned light
sheet at 532nm we have constructed a hybrid interferometer similar to the triangular
configuration in Fig. 3.10. The space-time diagram for this interferometer is shown
in Figure 5.6 (a). First, half the BEC is kicked ‘uphill’ in the waveguide with a 4h̄k
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Figure 5.5: The arrangement
of optical beams allowing the
green potential barrier and
waveguide into the science
chamber, shown as a top-down
diagram in (a) and a side-on
view in (b). The Dichroic Mirror
and f=5cm lens shown in (b)
were attached to the same,
custom made mount to allow
both to fit in the limited space
available and allow the place-
ment of the lens as close to the

atoms as possible.
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Bragg π/2 pulse. The kicked cloud of atoms slows as it slides uphill, then bounces
off the repulsive optical barrier, conserving energy and reflecting momentum along
the waveguide. It then speeds up as it slides downhill. During this time, the cloud
which was not Bragg kicked begins to slide downhill. When the two clouds are
overlapped again, slightly further downhill than where they started, we apply a
final 4h̄k π/2 Bragg pulse to recombine the atoms. As before, we then allow the
two momentum states to separate along the waveguide, ballistically expand to avoid
lensing by the dense cloud, and count the relative number of atoms Nrel in the |0h̄k〉
momentum state. By adjusting the laser phase φ π

2
of the final π/2 Bragg pulse we

can scan an interference fringe. This is shown in Fig. 5.6 (b) for an interferometer
time T = 30.5 ms. We must be careful to scan the laser frequency difference to
compensate for the Doppler shift on the atoms as they accelerate. We must also be
sure to calculate the time Tf at which the atoms will overlap again precisely. The
phase of the triangle configuration is both velocity and acceleration sensitive. It is
given by Eq. (3.106),

∆Φ = 8n2ωrecT − 2nk · gT2 (5.7)

in the approximation that the repulsive barrier is stationary in the inertial frame, i.e.
accelerating along the waveguide at the same rate as the atoms. In our configuration,
the repulsive barrier is stationary in the lab frame. Calculating explicitly the result
for the repulsive barrier being stationary in the lab frame we find that

∆Φ = ∆Φkin + ∆Φinertial + ∆Φsep (5.8)

=
︷ ︸︸ ︷
4n2ωrecTf + 2nk · v0Tf −

︷ ︸︸ ︷
nk · gTmTf +

︷ ︸︸ ︷
2nk · x f

(
1− 1

T f
Tm − 1

)
(5.9)

where v0 is the initial velocity of the cloud w.r.t the lab before the interferometer
begins, x f is the final position of the cloud w.r.t. the initial position, Tm is the time at
which the kicked cloud hits the mirror, and Tf is the time at which the two clouds are
overlapped again ready for the final beamsplitter pulse. This final time Tf is given
by

Tf = Tm

(
1 +

1

1 + m v0−gTm/2
nh̄k

)
. (5.10)

Simplifying the expression in Eq. (5.9) is possible if we make the trajectories sym-
metric about Tm by setting v0 = gTm/2. In this case Tf = 2Tm = 2T, the separation
phase is zero, and the Doppler shift part of the kinetic phase cancels the inertial
phase exactly, leaving just the recoil sensitivity



92 Optically Guided Interferometry

Figure 5.6: (a) Space-time area diagram of a velocity-sensitive interferometer config-
uration involving reflection from a blue-detuned repulsive optical barrier, simmilar
to Fig. 3.10. (b) Interferometric fringe recorded in this configuration for Tf = 61ms.

∆Φ = 8n2ωrecT . (5.11)

Unfortunately the experiment itself was pulled apart before the expected phase shift
was understood properly, so an extensive experimental verification of the phase shift
dependance has not yet been performed.

5.6 Butterfly configuration

One way to investigate the effect of vibrational noise on an interferometer is to build
an acceleration-insensitive configuration, which vibrations will not degrade as read-
ily. One such configuration is the “butterfly" configuration depicted in Fig. 5.7 (a).
This configuration begins like a normal Mach-Zehnder interferometer with a π/2
pulse then a π pulse separated by a time T. Then, we wait a time 2T for the two
clouds to pass through one another and reach the same displacement on the other
side of each other. At this point, another π pulse is applied, and after a time T the
clouds have overlapped a third time and we apply the recombination π/2 pulse. The
theory of this configuration has been explored in Section 3.4.3. Its symmetry makes
it insensitive to recoil frequency, and insensitive to any constant acceleration such as
gravity. It is sensitive to accelerations which change between the first and second
half of the interferometer, for example a vibration of the experiment table during
the interferometer. This sensitivity is given by Eq. (3.100), here rewritten for a total
interferometer time of 4T,
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Figure 5.7: (a) The butterfly configuration, which can be sensitive to rotations but not
to constant accelerations. (b) Some interference fringes generated by this configura-

tion.

δΦ = 2nk · as
16 cos (ωT) sin3 (ωT)

ω2 (5.12)

where as refers to the component of the vibration amplitude which is in phase with
the relative path displacement ∆x in the interferometer, i.e. odd w.r.t. the centre of
the interferometer.

In Fig. 5.7 (b) we show some interference fringes with this interferometer configura-
tion which were taken on the second iteration of the machine, after some vibration
isolation had been put in place. They show coherent interference for longer times
than comparable MZ interference fringes, showing that further vibration isolation
of the table will yield improvement in the longest interferometer times and largest
sensitivities achievable in future versions of the experiment.
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Chapter 6

Large Momentum Transfer in Atom
Interferometry

The work discussed in this chapter is published as

80h̄k momentum separation with Bloch oscillations in an optically guided atom interferometer
G. D. McDonald,* C. C. N. Kuhn, S. Bennetts, J. E. Debs, K. S. Hardman, M. Johnsson,
J. D. Close, and N. P. Robins.
Phys. Rev. A 88, 053620 (2013).

A faster scaling in acceleration-sensitive atom interferometers
G. D. McDonald,* C. C. N. Kuhn, S. Bennetts, J. E. Debs, K. S. Hardman, J. D. Close,
and N. P. Robins.
Europhysics Letters 105, 63001 (2014).

The interferometer in the previous section in which atoms reflected off a repulsive
barrier in the middle of the interferometer is an example of a Large Momentum
Transfer (LMT) interferometer. These kinds of interferometer are desirable as the
output signal of an atom interferometer generally increases with the momentum
splitting of the two states which form the arms of the interferometer.

In this chapter we explore the Coherently Accelerated Bloch (CAB) configuration
which allows LMT, based upon momentum transfer of up to 80 photon recoils to and
from optical lattices via Bloch oscillations. We measure the interferometric phase in
this configuration and show that phase sensitivity to an external acceleration in this
configuration scales as T3, faster than both the the T2 of a Mach-Zehnder configu-
ration and the T-scaling of a Ramsey-Bordé interferometer. We propose extensions
to T4 scalings and beyond. We characterize the longitudinal curvature of our optical
waveguide by constructing a gradiometer in the guide. We also demonstrate a single
beamsplitter with ∆p = 510h̄k, indicating the scalability of this approach to LMT.
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6.1 Some history of Large Momentum Transfer (LMT)

What is Large Momentum Transfer? In a Mach-Zehnder atom interferometer the
interferometric phase scales with acceleration a as [from Eq. (3.69)]

Φ = ke · aT2 (6.1)

where h̄ke is the total effective momentum separation between the two arms of the
atom interferometer. In this form it is plain to see that it is possible to increase the
sensitivity to acceleration dΦ

da by using a larger transfer of momentum, i.e. a larger ke.
It is also possible in this form to see that the acceleration sensitivity does not depend
upon the mass of the atom used.

So given a standard Mach-Zehnder atom interferometer utilising bragg transitions
as a starting point, how should one go about increasing momentum transfer, or the
space-time area of our interferometer? Here are several methods which have been
proposed and/or explored.

Use higher-frequency light
By switching the optical lattice from using light coupling to the D2 transition
in 87Rb at 780 nm, to a different transition at ≈ 420 nm, we can approximately
double the momentum transferred per photon. This has the disadvantage of
requiring a new set of optics which work at UV frequencies. In the absence
of an atomic transition, an ionisation grating can be used [115]. Here, 157 nm
light gives a fourfold improvement over a 2h̄k transition employing 780 nm
light. This technique has the advantage that it can be applied to any atomic or
molecular species. A disadvantage is that as it imprints the diffraction grating
via ionisation, it requires a certain fraction of the flux to be lost.

Use an ‘atomic mirror’ to reflect the atoms
Using a stationary sheet of blue-detuned light as a reflecting barrier for the
atoms allows the momentum of the atoms to be completely reversed, and was
used in Section 5.5 to form a velocity-sensitive interferometer. A disadvan-
tage of this technique is that it is limited to reflecting a momentum which the
atoms already have w.r.t the laboratory frame. To overcome this difficulty you
could create a moving optical barrier for the atoms using e.g. a rastered AOM
setup [199].

Higher-order Bragg transitions: Kick the atoms many times in one go
By coherently coupling two momentum states ∆p = 2nh̄k apart, it is possible
to create a LMT beam-splitter from a single pulse. This has been used to make
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atom-interferometers with 6h̄k [98, 7], 10h̄k [150, 144] and even up to 24h̄k mo-
mentum separation in a Ramsey-Bordè configuration with 4% visibility [174].
The disadvantage to this technique is that the laser power required to coher-
ently drive this transition scales quadratically with the momentum transfer
desired. However, high-power laser systems are being developed with exactly
this in mind [204].

Sequential Bragg: Kick the atoms more than once
This technique is known as Sequential-Bragg interferometry. It has been used
to demonstrate a momentum transfer of up to 24h̄k in an acceleration-sensitive
configuration. A momentum transfer of 102h̄k from sequential 6h̄k Bragg kicks
has been used in a system which demonstrated interference [49], however this
system was overwhelmed by random noise and therefore could not make any
acceleration measurement.

A disadvantage of this technique is that you are limited to an exponential de-
crease in atom flux as the momentum transfer is increased. Say each Bragg
kick imparts ∆p momentum to the atoms. On top of the standard MZ config-
uration, you sequentially stack m of these Bragg kicks together on each arm of
the interferometer at each beam-splitter, to reach a total momentum separation
of ∆ptot = (2m + 1)∆p between the arms of your interferometer. Assuming
each Bragg kick has an efficiency (fraction of atoms coherently transferred as
desired) 0 ≤ E ≤ 1, then the efficiency of the interferometer will be given by
Etot = E3+4m ∝ E2∆ptot . Thus the total efficiency of the interferometer expo-
nentially decays as the total momentum separation of the arms is increased,
leading the experiment in Ref. [49] to have only ≈ 150 atoms remaining at the
end of each interferometer run.

Bloch Lattice Acceleration: Accelerate the atoms on a conveyer belt
This technique is known as Bloch Lattice Acceleration [194]. By loading atoms
into an optical lattice, many tens [51], hundreds [39, 250, 45] and even thou-
sands [32, 190, 82] of photon recoils of coherent momentum transfer have been
demonstrated in interferometers in which both arms are in the same momen-
tum state. Prior to the work described in this chapter, the application of this
technique to interferometers in which the arms are separated in momentum had
achieved 6h̄k (15% visibility) [63], 10h̄k (≈ 2% visibility) [50, 52] and 24h̄k with
≈ 15% visibility [173].

The difficulty in this technique lies both in the momentum-state-selective loading
of atoms into the Bloch lattice so that only one of the arms of the interferometer
is accelerated, and in accelerating the atoms in such a way that the coherence
is maintained, and interference can be generated.
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Kapitza-Dirac scattering
By diffracting the atoms from a standing wave (stationary w.r.t. the motion of
the atoms) an equal fraction of the total number of atoms will be diffracted into
the ±2nh̄k diffraction orders. This is used to measure the photon recoil fre-
quency ω = h̄k2

2m in Ref. [106] to achieve a ±2h̄k splitting which is then enlarged
to ±4h̄k by a sequential Bragg transition, for a total momentum separation of
8h̄k.

Other techniques
Double-diffraction Raman techniques [153, 158] have reached ∆p = 8h̄k with
5% fringe visibility, and an extension to double-diffraction Bragg transitions has
been proposed [97]. Second-order sequential Raman transitions have been used
for rotation sensing [21]. Quasi-Bragg diffraction in the presence of a small
magnetic field (≈ 1G) has reached ∆p = 24h̄k beam-splitting [70] and been
theoretically predicted to be able to achieve much larger momentum splitting
[249] but has not as yet been incorporated into an interferometer. Stern-Gerlach
magnetic splitting has been used to construct an interferometer with a splitting
equivalent to a few h̄k, and can create beamsplitters in the hundreds of h̄k
[157]. Another possible technique once the two clouds are spatially separated,
is to grab each cloud in the interferometer with a rastered dipole trap [199] and
throw them in opposite directions. This is discussed later in Section 6.8.

An important consideration in making an LMT atom interferometer work is the
momentum-width of the atom source-cloud used, as this impacts upon the efficiency
and coherence of each step [233]. This results in a narrower momentum width source
directly translating into a larger achievable coherent momentum transfer.

6.2 Space-time Area and LMT

Following the theory of Section 3.1, the phase shift in a general acceleration-sensitive
atom interferometer is given by Eq. (3.30),

Φ =
m
h̄
A · a (6.2)

In this form it is obvious that when talking about Large Momentum Transfer, what
is really meant is large space-time area A =

∫
∆x dt, and, in the case of a Mach-

Zehnder atom-interferometer Eqs. (6.2) and (6.1) are equivalent. Space-time area
increases monotonically as the momentum transfer is increased, although the exact
functional dependence is specific to each implementation. The disadvantage of the
form of Eq. (6.2) is that the space-time area A contains a factor of h̄/m which cancels
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its inverse in Eq. (6.2), and so this form clouds the invariance of the interferometric
phase to the mass of the atom used.

Two acceleration sensitive configurations are in common use. The Ramsey-Bordé
configuration [31, 45, 50, 173, 23, 14, 174] is constructed from two trajectories which
stay a constant distance ∆x apart for the duration T of the interferometer1. It there-
fore has a space-time area A = ∆xT and so its acceleration sensitivity scales linearly
with T. The Mach-Zehnder (MZ) configuration [136, 174, 153, 7, 63, 165, 164, 207]
is constructed from two paths that have a constant velocity difference |∆v|, which
is reversed after the interferometer time T. The MZ space-time area is given by
A = |∆v| T2 and so the sensitivity to acceleration will scale with T2, as in Eq. (6.1).

In this chapter we also present the logical extension: an interferometer configuration
in which the two paths are separated by a constant acceleration |∆ab| with respect to
one another. In this configuration, the space-time area is given by A = |∆ab|

4 T3 and so
the sensitivity to the common, external acceleration a will scale as T3. This technique
will allow greater sensitivity for a given interferometer time T, thereby increasing
the sensitivity to accelerations at all frequencies to which the interferometer is un-
ambiguously2 sensitive f . 1/T. We demonstrate an increase in sensitivity given by
this technique, as compared with a standard MZ configuration. A straight forward
extension of the technique to a T4 scaling is also discussed.

6.3 Experimental set-up

Our interferometric source is a 87Rb condensate of 2× 106 atoms, formed as discussed
in Chapter 4, with a repetition rate of 2.5/min. We measure the axial trap frequency
just before release into the waveguide to be 9 Hz, by measuring the momentum os-
cillations after a 2h̄k Bloch acceleration. Similarly, by misaligning the Bragg beams
and giving a kick after release into the waveguide we measure the transverse (radial)
frequency to be 60 Hz.

6.4 Delta-kick cooling for a narrow momentum width source

As the cross beam is adiabatically ramped off, the waveguide intensity is increased
back to 4.5 W so as to hold the atoms against gravity. We then wait a time t f for the

1Neglecting the quick accelerations required to initially separate and finally recombine the two
trajectories.

2The interferometer is of course sensitive to higher frequencies as described in Section 3.3.2, but due
to aliasing it is not easy to determine which of the possible frequencies caused the signal.
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Figure 6.1: The space time area A =
∫

∆x dt is illustrated for several acceleration-
sensitive interferometer configurations. For clarity, the common inertial acceleration
a is zero in this diagram. (a) In a Ramsey-Bordé configuration, the two particle
trajectories are separated by a constant displacement ∆x for the duration of the in-
terferometer. (b) A Mach-Zehnder configuration separates the two trajectories by a
constant velocity difference |∆v|. Halfway through the interferometer, this velocity
difference reverses sign. (c) This paper introduces the configuration in which the
two trajectories are separated by a constant acceleration |∆ab|. (d) In practice, an
initial velocity difference between the two arms is required before the acceleration
can be accomplished state-selectively, so the CAB interferometer configuration we

investigate experimentally is a combination of both (b) and (c).
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Figure 6.2: We form a BEC in a cross beam dipole trap, before releasing it into the
waveguide. After it has expanded for 125ms, we flash on the cross beam again
to apply delta-kick cooling to the atoms. Our interferometer is formed by Bragg
and Bloch pulses from counter-propagating lattice beams aligned collinear with the
waveguide beam. The collinearity is achieved through the use of Dichroic Mirrors

(DM).

atoms to expand in the guide, during which time they convert their mean-field en-
ergy into the kinetic energy of their velocity spread [63, 164] and then expand further
until the position of each atom along the guide is well correlated with its momentum
[See Fig. 6.3 (a) and (b)]. Now the dipole cross beam is flashed on again for 2ms,
providing an approximately harmonic potential which decelerates the faster atoms.
This is an example of delta-kick cooling [12], which has been employed previously
using Quadrupole-Ioffe magnetic traps [175, 12], but had not yet been reported for an
optically generated harmonic potential. Subsequently this optical delta-kick cooling
technique has been used in combination with magnetic techniques to demonstrate
temperatures as low as 50 pK [146] (equivalent to a momentum width of 0.012h̄k),
and is proposed to be used in future space-based missions. Delta-kick cooling effec-
tively rotates the ellipse describing position-momentum correlation along the waveg-
uide so as to have minimal spread in momenta across the cloud [See Fig. 6.3 (c)].

For the case of a point source of atoms the process can be considered equivalent col-
limation of an expanding laser beam through a thin lens, and the thin lens equation
(with position variables appropriately transformed to time) applies;

1
t f

=
1
ti
+

1
to

(6.3)

where t f is the focal time of a specific lensing (delta-kick cooling) pulse which oc-
curred a time to after the point source was released and began to expand, and ti is the
time before the focussed image of the original source cloud will appear. To collimate
the atoms into a narrow momentum width requires expanding them for a large time
to and then applying a focussing pulse with t f = to such that ti is as large as possible
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Figure 6.3: (a) Immediately after the condensate is released into the waveguide, it
has a minimal spread in spatial extent and in momentum width. (b) Over time, the
cloud expands ballistically until momentum is well correlated with position along
the guide. (c) Application of a harmonic potential for a short time (the delta-kick)
reduces the momentum spread of the cloud, which now has a larger spatial extent.
(d) It is important to adjust the waveguide intensity so that the delta-kick cross-beam
pulse is applied symmetrically over the cold cloud, otherwise transverse oscillations
will occur in the guide. Here we show this adjustment process, in which the cloud is
photographed a certain time after delta-kick cooling. The cloud is observed to oscil-
late if the waveguide power is either side of 4.5 W. At 3.7 W we can see atoms falling
out of the guide as they oscillate. (e) We optimize our delta-kick cooling by looking
at the fringe visibility (as measured by a sinusoidal fit) of a 40h̄k interferometer. We
find our best visibility when our cross-beam flashes on 125ms after the atoms are re-
leased into the waveguide. (f) Of course, this collimation is imperfect; here we show
the longitudinal width σx of the cloud expanding after release as measured by the
standard deviation of a gaussian fit, both with (yellow triangles) and without (blue
diamonds) the cross beam flash at 125ms. Also shown is the transverse width σy (
red squares). All widths are measured after an extra 22ms of ballistic expansion after

the waveguide expansion time shown in (f).
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and the matter-wave is collimated.

In the case of a BEC in trap we do not have a point source of atoms. A non-interacting
BEC sourced from a harmonic potential will initially be at the Heisenberg limit of
σxσpx = h̄/2. As the BEC expands σx will increase while σpx will stay constant, so
the uncertainty product will no longer be at this limit. However, either at the point
of refocussing (ti) or after collimation, the cloud will return to the Heisenberg limit
but with a different σ′x and σ′px

. Because of this, delta-kick cooling (or matter-wave
focussing) is a form of quantum-mechanical squeezing3. In a BEC with interactions,
the untrapped momentum width will increase after release as the mean-field en-
ergy converts to kinetic energy, which is an additional imperfection on the delta-kick
cooling process.

Due to the finite-size σx, the mean-field energy conversion and the anharmonicity of
our dipole cross beam potential our delta-kick cooling is not ideal, so in practice we
calibrate the process by measuring the fringe visibility of a 40h̄k CAB interferometer
performed after various configurations of pulse strength (∝ 1/t f ) and object times
to. We find t f = to = 125 ms for our optimal delta-kick cooling configuration.
Figure 6.3 (e) shows this calibration and demonstrates that a narrow-momentum-
width atom source is critical for reasonable fringe visibility in an LMT interferometer.
By extracting the gradient of a linear fit to the expanding delta-kick-cooled cloud
width (Figure 6.3 (f), yellow triangles) we see that our interferometric atom source
now has a momentum width of 0.05h̄k, equivalent to a temperature of around 900 pK.

Also, as shown in Figure 6.3 (d) it is important to adjust the intensity of the waveguide
through this process, in order that the cloud of atoms is not set in motion transver-
sally by the delta-kick cooling pulse. This motion occurs if the dipole cross-beam
is not aligned vertically with the position of the atoms when the delta-kick cool-
ing pulse is applied. Adjusting the waveguide intensity corrects this missalignment
though gravitational sag as discussed in Section 2.7.3.

6.5 Interferometer Pulse Sequences

Our optical lattice laser setup is described in Section 4.3. Prior to our interferometer, a
velocity selection Bragg pulse of 10h̄k is used to isolate the portion of atoms (≈ 80%)

3In general, squeezing results from some kind of (usually quadratic) non-linearity. In the case of

the free-space expansion here, the nonlinearity is trivial — it is the kinetic energy term p̂2

2m in the
Schrödinger equation. At the time of the delta-kick cooling pulse itself, the harmonic potential mωx̂2

2
plays this role.
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with a narrow momentum width σp from those not properly cooled by our delta-kick
process. For clarity, the following interferometry sequences will be described in the
frame of these velocity selected atoms, which are themselves moving at 10h̄k with
respect to the laboratory frame. Each part of each sequence is labeled with roman
numerals corresponding to its depiction in Figure 6.4.

6.5.1 Mach-Zehnder sequence

A standard MZ interferometer sequence is constructed as follows, as depicted in
Fig 6.4 (a). i. An optical standing wave formed from two counter-propagating beams
each of wavevector ±k is used as a matter-wave diffraction grating, beam-splitting
the atoms along two trajectories which are separated in momenta by the Bragg con-
dition, ∆px = 2nh̄k, where n is the diffraction order. v. After a time T, another
Bragg-diffraction pulse is applied which diffracts the stationary state to 2nh̄k at the
same time as diffracting the 2nh̄k state to be stationary. This effectively swaps the
momenta of each state, so it is the atom-optical equivalent of a mirror. vii. When
a total time 2T has elapsed and both trajectories are overlapping once again, a final
Bragg-diffraction beam-splitter pulse is applied which recombines the two momen-
tum states.

6.5.2 CAB sequence

Our CAB interferometer sequence, illustrated in Fig. 6.4 (b), is built upon this stan-
dard MZ configuration. i. After the first Bragg-diffraction beam-splitter there are
two momentum states in the waveguide, one stationary and one with momentum
px = 2nh̄k in the positive-x direction. iii. Over a time Tr we selectively load the
stationary momentum state into a stationary optical lattice with a potential energy
depth of 15Er, where the photon recoil energy is given by Er = (h̄k)2/2m. We accel-
erate the lattice in the negative-x direction via nb Bloch oscillations [184] over a time
Tb, each of which imparts 2h̄k momentum. This amounts to a constant acceleration
rate of ∆ab = 2nb h̄k

mTb
applied to the state loaded into the lattice. The state selectivity

is accomplished because the optical lattice is moving fast enough with respect to the
p = 2nh̄k momentum state that this state experiences just the time-averaged lattice
potential, which imparts no acceleration [see Fig. 2.10 (a)]. iv. After a negligible time
Tf we decelerate the state until it is stationary again. v. The Bragg-diffraction mirror
pulse is applied a time T after the beginning of the interferometer, which swaps the
momenta of each state. vi. The Bloch lattice acceleration and deceleration sequence
is now applied to the other arm of the interferometer. vii. The two momentum states
are recombined by a final Bragg-diffraction beam-splitter.



§6.5 Interferometer Pulse Sequences 105

Figure 6.4: The space-time tra-
jectories of the three interfer-
ometer configurations consid-
ered in this chapter are shown
here in the freely-falling frame,
along with the pulse sequence
required to generate each one.

(a) A 10h̄k Mach-Zehnder inter-
ferometer is constructed from
three Bragg pulses in a π/2 −
π − π/2 configuration. A
fringe can be scanned out by
adjusting the phase φ π

2
of the fi-

nal beam-splitter pulse.
(b) The CAB scheme builds
upon the 10h̄k MZ by selec-
tively accelerating one arm of
the interferometer at a time by
up to 60h̄k using a Bloch lattice.
In this case the interferomet-
ric fringe can be scanned out
by adjusting either the phase
φ π

2
of the final Bragg beam-

splitter pulse, or the phase φb of
the last Bloch acceleration lat-
tice applied. (The choice of
which pulse to use for adjust-
ing the phase is of course com-

pletely arbitrary)
(c) Faster acceleration in the
Bloch lattice requires a larger
initial velocity separation in or-
der to maintain the velocity-
state selectivity. The CAB2 se-
quence increases this separation
by making each beam-splitter
from sequential Bragg pulses.
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6.5.3 CAB2 sequence

i. The CAB2 sequence [shown in Fig. 6.4 (c)] begins with a 2nh̄k π
2 Bragg pulse

with n = 5 applied to the atoms to coherently split them into two momentum states,
one in the initial 0h̄k state, the other traveling at 10h̄k ii. followed by an extra 10h̄k
Bragg kick which is given to the faster 10h̄k atoms, taking them to 20h̄k. iii. The
0h̄k atoms are then loaded into a Bloch lattice of 10-20 recoil energies over a rise
time of Tr = 110µs which is accelerated in the other direction up to 2nbh̄k = −60h̄k
depending upon the final momentum separation desired, over a time Tb = 150µs.
iv. After a free evolution time of Tf , these accelerations are reversed, to bring the
atoms in the lower arm back to the 0h̄k and the upper arm back to 10h̄k. v. A time
T after the initial π

2 pulse we apply a π Bragg pulse to invert the two momentum
states before vi. repeating the acceleration and deceleration sequence, which now
acts upon the opposite arm of the interferometer. vii. After another period T, the
two halves of the atomic wave packet are overlapped again and we apply a second
π
2 pulse to interfere the two states.

6.5.4 Calibration of Bloch Lattice

Adjusting the Bloch lattice intensity, load rate and acceleration rate for the CAB and
CAB2 sequences requires careful decomposition and inspection of the interferometer
sequence, and the process is illustrated in the flowchart of Fig. 6.5.

6.5.5 Detection

The final optical standing wave (vii, the recombination π/2 pulse beam-splitter) can
have an arbitrary phase offset φ π

2
from the initial optical standing wave i, which

amounts to an x-displacement of the peaks and troughs in optical intensity4.

We allow these final states to separate, then switch off the waveguide to allow bal-
listic expansion for 8ms to avoid lensing of the imaging light by the narrow, op-
tically dense cloud of atoms. Using absorption imaging we count the number of
atoms in each spatially separated momentum state. To remove the effect of run-to-
run fluctuations in total atom number, the relative atom number in the 0h̄k state
Nrel = N0h̄k/(N0h̄k + N10h̄k) is used. The final images are analyzed with a Fourier
decomposition algorithm described in Section 4.4 to determine which parts of our
final atomic density distribution are contributing to the interference. By scanning the

4Of course all of the pulses can have arbitrary phase offsets, but this is an unnecessary complication.
This generalisation is dealt with in Section 3.2.3.
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1. Split cloud into two momentum 
states with a beamsplitter pulse

2. Load, then unload the desired 
momentum state (no acceleration)

Are there momentum states that 
weren’t there in step 1?

Yes

No

Need either a longer load 
time or smaller lattice depth

3. Load, then accelerate, then 
unload that state.

Need either a longer acceler-
ation time or higher lattice 

depth

Accelerated state split into multiple 
states/ was not accelerated enough

Yes

No

Undesired state was also 
grabbed / accelerated / split

YesNeed a lower lattice depth or 
a greater initial momentum 

splitting

No

3. Reload and then decelerate.

4. Apply mirror pulse

5. Load other state, then 
accelerate and unload it.

6. Reload, decelerate, then 
unload the other state.

5. Apply final recombination 
pulse with arbitrary phase

Do you see intereference? Does the 
output change as you vary the phase 

of the recombination pulse?

Need a smaller lattice depth, 
probably with a longer 

acceleration time
No

Yes

Success! 
Take an interference fringe 

and record data.

Start Here 

Figure 6.5: Flowchart illustrating the calibration process for Bloch lattice intensity
and acceleration rate in the Bloch lattice, so as to maintain coherence throughout the

interferometer sequences.
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Figure 6.6: Interferometric fringes are displayed for a 30h̄k interferometer with
nb = 10, n = 5 while scanning (a) φb or (c) φ π

2
, and (b) a 50h̄k interferometer with

nb = 20, n = 5 while scanning φb. Red circles are data points and the blue line is a
sinusoidal fit to the data. (d) The phase shift Φ0 of fringes taken using the CAB inter-
ferometer sequence (red triangles) increases linearly with nb. We use Equation (6.5)
to calculate the acceleration (blue diamonds) from each fringe set (with the addition
of a systematic offset due to imperfect beam alignment for this data set). The blue
dashed horizontal line indicates the average of the measurements of acceleration, and

the red dotted line is a line of best fit to the phase shift data.

laser phase φ π
2

of the final π
2 Bragg pulse, we obtain fringes in Nrel which oscillate

according to Eq. (5.3) which in this case is equivalent to

Nrel =
V
2

cos(Φ0 + nφ π
2
+ nbφb) + c (6.4)

where Φ0, the phase shift which is sensitive to an external constant acceleration a, is
given by Eq. (3.80) from Section 3.4.2 (after including an additional acceleration-free
period Tf in each half of the interferometer)

Φ0 = 2
(

n + nb ·
Tb + Tf

T

)
· kaT2 . (6.5)

As can be seen from Eq. (6.4), an interferometer fringe can be scanned out by chang-
ing the relative phase of any of the pulses in the sequence. Shown in Figure 6.6 (a)-(c),
are the fringes obtained by scanning either the phase of the final recombination Bragg
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pulse φ π
2

or the phase of the last Bloch acceleration lattice φb in a CAB sequence. The
choice of which phase to vary is arbitrary and does not affect the measurement of the
signal Φ0. The linear dependence of Φ0 on the number of Bloch oscillations nb with
all other variables in Eq. (6.5) held constant is verified in Figure 6.6 (d) (red trian-
gles), all the way from a 10h̄k through to a 50h̄k CAB interferometer. As all the data
in Figure 6.6 (d) was taken sequentially on the same day with no adjustment to the
waveguide tilt, the calculated acceleration from each interferometric fringe should be
the same, and it can be seen (blue diamonds) that this is indeed the case.

The Bloch lattice acceleration rate |∆ab| implicitly appears in Tb in Eq. (6.5), because
|∆ab| = 2nbh̄k/mRbTb. As per the discussion in Section 2.7.7.2, for small lattice depths
U0 . 10Er the maximum adiabatic acceleration rate |∆ab| increases quadratically
with lattice depth (see also Ref. [184]), and therefore also increases quadratically
with available laser power. For larger lattice depths, U0 & 10Er, the maximum adi-
abatic acceleration rate |∆ab| increases linearly with lattice depth and therefore also
increases linearly with available laser power. This means that a Bloch-based config-
uration such as the CAB sequence can achieve a larger sensitivity for a given laser
power than an equivalent sequential-Bragg configuration [49], in which the momen-
tum transferrable in each Bragg diffraction pulse increases as the square root of the
available laser power [233]. In practice the lattice depth is limited because it must
not bind the other “non-resonant" arm of the interferometer [50], which means that
the other arm must be in the top-left part of Fig. 2.10. By using additional sequential
10h̄k Bragg π pulses, it is possible to increase each Bragg splitting to an effective
∆p = 20h̄k split for our CAB2 sequence, as opposed to a ∆p = 10h̄k Bragg split in
our CAB sequence. In this way it is possible to avoid unintentionally binding the
other arm of the interferometer while the lattice depth is increased, so as to achieve
a higher Bloch lattice acceleration rate and a higher total momentum separation.

In Fig. 6.8, we show the fringe visibility we have observed for various interferometer
configurations: a standard ∆p = 10h̄k MZ with 98% visibility, our CAB sequence
with the total momentum separation up to ∆p = 70h̄k, and our CAB2 sequence with
∆p up to 80h̄k. We see that the CAB sequence, with its initial 10h̄k Bragg splitting
before the Bloch lattice is applied, decays to zero fringe visibility at a lower ∆p than
our CAB2 sequence, which has an initial 20h̄k sequential Bragg splitting. This result
is in agreement with our earlier discussion about |∆ab| and lattice depth.

The maximum momentum separation we have achieved (while still being directly
sensitive to phase) is ∆p = 80h̄k, with a visibility of 7% at 2T = 2.6 ms as seen
in Fig. 6.7 (h). The acceleration measured from this data is a = 3.1(1)× 10−3 m/s2

from 146 runs of the experiment, which corresponds to that part of the waveguide
being tilted 0.31(1)mrad away from horizontal. Our best acceleration sensitivity of
7× 10−3 m/s2 Hz−1/2 is achieved at ∆p = 70h̄k, also shown in Fig. 6.7 (g).
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Figure 6.7: Interferometric fringes
recorded by scanning the laser phase φ π

2
of the final recombination 10h̄k π

2 pulse.
Each realisation of the experiment is
shown as a red circle, and a sinusoidal
fit of the form Nrel =

V
2 cos(nφ π

2
+Φ)+ c

is shown as a blue line. (a) 10h̄k MZ
with T = 0.2 ms, shows a visibility V of
98%. This is the starting configuration
for the other pulse sequences. (b)-(d)
CAB with 2T = 2 ms and the highest
momentum separation being 20, 40 and
70h̄k, with visibilities V of 60%, 52%
and 5% respectively. (e)-(h) CAB2 with
2T = 2.6 ms and momentum separation
of 20, 40, 70 and 80h̄k, with visibilities
V of 33%, 23%, 16% and 7% respectively.
CAB performs better at low momentum
separation, while CAB2 performs better
at high momentum separation, as can
be seen in Fig. 6.8. In (h) we have
used averaging of three runs of the
experiment at each φ π

2
to combat phase

noise.
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Figure 6.8: Fringe visibility for vari-
ous LMT accelerometer experiments
[164, 174, 50, 153, 173, 49, 144, 63, 7]
as measured by the peak-to-peak am-
plitude of a sinusoidal fit to each
fringe set. A standard 10h̄k Mach-
Zehnder and both the CAB and CAB2
pulse sequences used in this work
(see text) are displayed for compar-
ison. It should be noted that the
fringe visibility of the interferometer
with ∆p = 102h̄k in Ref. [49] is zero,
as phase noise prevented any phase
measurement from being performed.
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Figure 6.9: (a) The atomic trajectories (not to scale) which make up the gradiometer.
Four distinct states are seen which are derived from two spatially separate interfer-
ometers. (b) The relative atom number Ni

rel in the 0h̄k state from the ith interferome-
ter is plotted while scanning the common phase φ π

2
of the last π

2 pulse. A fit to each
sinusoid gives the acceleration-sensitive phase of each interferometer. (c) When the
two fringes are plotted parametrically against one another, an ellipse is generated
from which the phase difference of the two interferometers can also be determined.

6.6 Gradiometer to measure waveguide curvature

Because the optical waveguide is formed at the shallow focus of a gaussian laser
beam, it will have some curvature over the scale of the Rayleigh length (see Sec-
tion 2.7.3). To measure the trapping frequency in the longitudinal direction (which
is ideally zero), we construct a ∆p = 10h̄k = mRbvrec gradiometer from two in-
terferometers with a spatial extent Tvrec = 0.1mm which are separated by a distance
x2− x1 = Tsepvrec = 1mm, as shown in Fig. 6.9. Since the difference between the mea-
sured accelerations in each interferometer can be related to the trapping frequency
ω of the waveguide curvature by a2 − a1 = ω2(x2 − x1), using Eq. (3.69) we can re-
late the phase difference Φ2 − Φ1 between the two interferometers to the trapping
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frequency by

ω =
1

2nkT

√
mRb(Φ2 −Φ1)

h̄Tsep
. (6.6)

We calculate the longitudinal waveguide frequency by this method to be ω = 2π ·
0.22(2) rad/s, using the data shown in Figure 6.9. This compares well with a calcu-
lated estimate based upon the waveguide beam characteristics of ω = 2π · 0.18 rad/s.

6.7 A faster sensitivity scaling

One application of this system to high-sensitivity inertial sensing is in creating an
accelerometer in which the acceleration sensitive phase scales as T3, as opposed to a
typical MZ which scales with T2, or a Ramsey-Bordé configuration in which sensi-
tivity scales with T. The acceleration dependence of this phase offset is given by the
space-time area ACAB =

∫
∆x dt of our interferometer,

ΦCAB =
m
h̄

a · ACAB

= 2
(

n + nb ·
Tb + Tf

T

)
k · aT2 (6.7)

which reduces to the phase offset of an MZ configuration ΦMZ = 2nk · aT2 when
nb = 0.

In order to obtain the T3 scaling, we must look at what happens when the interfer-
ometer time T is increased, keeping constant the relative acceleration ∆ab which we
apply via the Bloch lattice. In this case nb = Tb/τ, where the constant τ = 2h̄k

m|∆ab| is
the period for one Bloch oscillation. Assuming Tr and Tf are much smaller than Tb,
then we have Tb → T

2 , and Eq. (6.7) becomes

ΦCAB = 2nk · aT2 +
k · aT3

2τ
(6.8)

= ΦMZ +
k · aT3

2τ

which explicitly shows the extra T3 scaling in acceleration sensitivity achievable with
this configuration.



§6.7 A faster sensitivity scaling 113

We experimentally test Eq. (6.7) by first measuring ΦMZ for a standard MZ configu-
ration with n = 5, nb = 0 (blue triangles on Fig. 6.10) in order to extract the external
acceleration a due to a tilt in the waveguide. From this we calculate via Eq. (6.7) what
ΦCAB will be for the CAB sequence (red dashed line). We then measure ΦCAB for
T = 0.642 ms, nb = 1 through to T = 1.042 ms, nb = 21 (red circles) and our exper-
imental parameters were set such that T = 2nbτ + 0.622 ms with a Bloch oscillation
period of τ = 10 µs. The excellent agreement shown in Fig. 6.10 between the pre-
dicted phase for the CAB sequence which was deduced from the MZ measurements,
and the measurements of ΦCAB validate Equation (6.7) and demonstrate a T3 scaling
in phase sensitivity to acceleration.
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Figure 6.10: Here we experimentally demonstration the faster sensitivity scaling. The
interferometric phase offset Φ is measured for each fringe as the interferometer time
T is increased. The blue solid line is a fit to the MZ phase ΦMZ (blue triangles) of
the form ΦMZ = 2nk · aT2 to extract the acceleration a along the waveguide (due
to a slight tilt) for the day the data was taken. This acceleration is then used to
predict ΦCAB for the CAB sequence by equation (6.7) (red dashed line). Experimental
measurement of ΦCAB for the CAB sequence (red circles) increases faster than T2, as
predicted by Eq. (6.7). Uncertainties in Φ extracted from each fringe are one standard

deviation confidence intervals.
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6.8 Extension to Tn scaling

We now turn to yet higher scalings with respect to T. The maximum adiabatic accel-
eration rate ∆ab using a Bloch lattice increases quadratically with lattice depth until
U0 ≈ 10Er and then linearly thereafter (see Sec. 2.7.7.2). However, in the CAB scheme
both lattice depth and acceleration rate are limited by the instantaneous velocity sep-
aration of the two clouds. This is because if the lattice is too deep it will also bind the
other momentum state, and thus our acceleration will no longer be state selective.
Therefore, the best possible use of available laser power would require the appli-
cation of a constantly increasing relative acceleration ∆ dab

dt (known as constant jerk)
between the two states, while commensurately increasing the optical lattice depth.
This would give a a space-time area of AT4 = 1

24 ∆ dab
dt T4, producing an interferometer

with phase Φ = ΦMZ + m
h̄ a · AT4 . At the point at which lattice depth is limited by

available laser power, the maximum acceleration rate will become constant again,
and so the scaling will revert to T3. Generalising to arbitrary scalings in T would
be possible if an interferometer were developed with a constant n-th derivative of
displacement (for n ≥ 1). It would have a space time area of

ATn+1 =
1

n! 2n−1

[(
d
dt

)n

∆x
]

Tn+1 (6.9)

and therefore a Tn+1 scaling in acceleration sensitivity. Although there is no practical
advantage in the present system beyond constant jerk, it is possible that an analogous
scheme will be developed in the future which is not limited by laser power, and could
practically take advantage of these higher scalings. For instance, one can envisage
positionally dependent trapping potentials (e.g. dipole traps [199]) accelerating each
cloud in opposite directions once they are separated in space.

6.9 Future Directions

In an attempt to explore the boundaries of these kinds of LMT interferometer, we
have constructed a ∆p = 510h̄k beamsplitter according to the CAB sequence, lim-
ited only by the size of the absorption image, and this is displayed in Fig. 6.11. In
fact, Bloch lattices have been used to accelerate cold clouds by up to several thou-
sand photon recoils [45, 32, 39, 14, 82] but these configurations have no momentum
separation between interferometric states, ∆p = 0.

In the future, optical-lattice intensity-noise reduction in this system is possible by
using multiple overlaid Bloch lattices to address both momentum states separately,
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Figure 6.11: An absorption image of a BEC which has been split by ∆p = 510h̄k by
the CAB beamsplitter. This was limited only by the size of the absorption image, as

the clouds are separated by ≈ 8 mm at the time of the image.

and accelerate them in opposite directions at the same time [173]. This will cancel
the a.c. Stark shift due to Bloch laser intensity noise, as each arm simultaneously
experiences the Bloch lattice. In the present CAB sequence the a.c. Stark shift is
only cancelled at a later time in the interferometer, so with this improvement the
interferometer will become less sensitive to such fluctuations. However, as each arm
of the interferometer only experiences half the laser intensity, this technique will
lower the maximum acceleration rate of each state. This results in a lowering of the
signal Φ. Other noise reductions in order to enhance signal-to-noise can be achieved
by reducing mechanical vibrations [165], evacuating the optical path and locking-out
optical-lattice-laser frequency fluctuations [25].

There are numerous avenues for future research in this system. By imaging a cold
atom interferometer at the quantum-projection-noise limit [72, 222] we can inves-
tigate large-atom-number squeezing directly via spatial overlap of the two states
[129, 110, 77]. An important follow-on experiment will be to repeat the experiments
described in this chapter, using an interactionless condensate. The ability to hold
all magnetic sub-states in the same waveguide spatial mode with an arbitrary, con-
stant magnetic field allows us to completely remove the self-interaction in such a
system by setting the scattering length to zero [9, 6]. This is described in detail
in the next chapter. This could allow Heisenberg-limited delta-kick cooling of our
atomic source, reaching even narrower momentum widths for interferometry. An in-
teractionless cloud may also reduce decoherence in the Bloch lattice, allowing larger
momentum separation or longer coherence times. The system offers the possibility
of superimposing multidimensional lattices onto the propagating atoms to investi-
gate universality in a 1D Bose gas [148, 149], or create the atom-optic equivalent of
photonic crystals [78].

6.10 Discussion

In summary we have shown a MZ interferometer based upon a CAB2 sequence with
a momentum separation of up to 80h̄k. We have achieved an acceleration sensitivity
of 7× 10−3 m/s2 /

√
Hz and a tilt sensitivity of 18 mrad/

√
Hz. We speculate that it

is our use of an optical waveguide which allows us to achieve high Bloch accelera-
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tions without a drastic loss of coherence. There are three mechanisms we propose for
this. First, since the atoms are transversely confined, they sample only a small seg-
ment of the comparatively much larger optical lattice beams so any spatial wavefront
distortion due to an imperfect lattice beam mode is common to the whole interfer-
ometer. Secondly, the transverse confinement during Bloch acceleration allows for
better mode matching at the final recombination pulse as compared with the use of a
Bloch lattice in free space. Lastly, our use of an optical waveguide to support against
gravity allows us to reduce the longitudinal velocity width via our optical delta-kick
cooling.

A single beamsplitter of ∆p = 510h̄k was constructed to demonstrate the scalability
of this method. We also constructed a gradiometer which was used to measure the
curvature of our optical waveguide with a sensitivity σω =0.1 rad/s. As an indication
of the possible sensitivity this device is capable of, we can look at the quantum-
projection-noise-limited sensitivity of a single run of an acceleration sensor with this
architecture. Taking a momentum separation of 500h̄k, an interrogation time of T =
50 ms (limited by a vacuum system of length 10 cm), and using 2× 106 atoms, the
shot noise limited sensitivity is 1.3× 10−10 m/s2. This is the same sensitivity as could
be achieved with a 2h̄k interferometer with T = 580 ms in the same vacuum system.

We have also demonstrated a novel configuration for a cold-atom interferometer in
which acceleration sensitivity scales as T3. This CAB configuration is realised using
an optical Bloch lattice to subject one arm of the interferometer at a time to an addi-
tional constant acceleration. The additional T3 scaling in sensitivity to the external
inertial acceleration a allows this CAB configuration to have increased sensitivity to
accelerations measured with a given interferometer time T as compared with a Mach-
Zehnder configuration. This CAB configuration will therefore be useful in increasing
the phase sensitivity to accelerations at any given frequency, without requiring any
increase in available laser power. This technique can therefore be immediately ap-
plied in navigation and inertial sensors which are currently under development, and
in proposed schemes for gravitational wave detection.

The choice of Bragg [165] and not Raman [50] beamsplitters in this CAB configuration
allows both momentum states to be in the same magnetic internal state throughout
the interferometer, eliminating this particular systematic phase shift. The use of a
BEC source cloud presents its own systematic phase shift, the density-dependent
mean-field shift [63]. However, this shift can be reduced arbitrarily by lowering the
cloud’s density via the delta-kick-cooling process, or removed entirely by turning off
mean-field interactions through the use of a Feshbach resonance as we will describe
in Chapters 7 and 8. To separate the effects of acceleration due to gravity, the optical
potential and the magnetic field gradients possibly present in the experiment, one
could use a magnetically insensitive internal state as we did in Chapter 5 or com-
pare the phase shift across different isotopes simultaneously, which is discussed in
Chapter 8.



Chapter 7

Variable Scattering Length
Interferometry

Scattering length is a low-energy description of inter-atomic collisions [48]. As will
be demonstrated in this chapter and the following chapter, a condensate with a vari-
able scattering length is a versatile tool for interferometry. By setting the scattering
length to zero [81, 108] it is possible to eliminate mean-field phase-shifts, a common
perturbation in interferometers using condensed sources. Removing interactions also
allows the condensate to disperse only at the Heisenberg limit ∆x∆p ≈ h̄. Even more
tantalisingly, the interactions can be made attractive, just enough to cancel out the
Heisenberg limited dispersion, creating a cloud with no dispersion at all. This solitary
non-dispersive propagating wave is known as a soliton.
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7.1 Feshbach resonance

The Feshbach resonance used to manipulate the s-wave scattering length of the
|F = 2, mF = −2〉 state in 85Rb is controlled by an external magnetic bias field. The
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resonance is well characterised by the equation

a = abg

(
1− ∆

B− B0

)
, (7.1)

relating the s-wave scattering length, a, to the magnetic field, B, through the back-
ground scattering length, abg = −443 a0, the width of the Feshbach resonance, ∆ =
10.71 G, and the centre of the resonance, B0 = 155.041 G [198, 10]. This relation is
depicted in Figure 7.1.

Figure 7.1: (a) Scattering length as a function of Magnetic field near the Feshbach
resonance in the |F = 2, mF = −2〉 state of 85Rb, as per Equation (7.1). The dashed
vertical line indicates the resonance itself at B0 = 155.041 G, and the dashed horizon-
tal line indicates the background scattering length abg near the resonance. Most
of our experiments are conducted on the high-field side of the resonance, near
the scattering-length zero at B = 165.75 G. This section is enlarged in (b), and the

scattering-length zero is marked with a dotted vertical line.

To begin we must verify that we have a 85Rb condensate and have control over its
scattering length via the Feshbach resonance at B = 155G. This was done by looking
at the expansion of the BEC at different magnetic field strengths, both expanding in
free space and in the waveguide. The dependence of this expansion upon scatter-
ing length is much easier to detect using a BEC source than an ultra-cold thermal
cloud, due to the higher density and collision rate. This expansion data is shown
in Figure 7.2 for the free-space expansion (a) and the guided expansion (b). At
large positive scattering lengths, the BEC should expand rapidly as the large in-trap
mean-field energy is converted to kinetic energy in the untrapped directions. At
large negative scattering lengths, the BEC should implode [6, 202, 71, 203] and either
lose atoms to three-body recombination due to the high density as the condensate
collapses, or expand outwards again after implosion, again with the mean-field en-
ergy now converted to kinetic energy. All of these effects lead to the Optical Depth
(OD, see Section 2.8.2) of the expanded condensate being a maximum near the zero
of scattering length, and dropping either side of zero. The width of the expanded
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condensate will be a minimum for a near-non-interacting cloud (a ≈ 0) and get wider
for |a| > 0. Of course the minimum in expansion will not be at exactly a = 0, but at
a slightly attractive (negative) scattering length to cancel out the Heisenberg-limited
dispersion of the BEC. The exact value will depend upon the density of the cloud
and the shape of the trapping potential. This will be explored further in the next
section.
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Figure 7.2: (a) Expansion of the 85Rb condensate from the crossed dipole trap as a
function of scattering length after the trap has turned off. Filled circles - OD, squares
- σx radial width, diamonds - σy axial width. Vertical dashed line indicates zero
scattering length on the horizontal axis. (b) Expansion along the waveguide as a
function of Feshbach magnetic field. Filled circles - OD, squares - σx radial width,
diamonds - σy axial width. Both sets of data represent a single set of runs sweeping

through the magnetic field values.

Because the waveguide is extended in space, it is critically important to precisely
characterise the bias field change along the waveguide. Radio-frequency (r.f.) transi-
tions on an extended matter wave source are used to achieve this. A 1 µK sample of
87Rb atoms is released into the waveguide and allowed to expand over a second. A
10 ms burst of r.f. couples the |F = 1, mF = −1〉 and |F = 1, mF = 0〉 internal Zeeman
states over a narrow frequency range according to the relation h̄ωr.f. = µB∆mFgFB,
where µB is the Bohr magneton, gF is the Landé g-factor for 87Rb and the mag-
netic bias field is held at B = 165.776 G at the trap center. The bias field is then
turned off and the resulting magnetic species are separated by a 2 ms Stern-Gerlach
pulse from the quadrupole coils. The locations at which each frequency couples
the two internal states maps to our magnetic field along the waveguide, and this is
shown in Figure 7.3. A parabolic fit to this data yields a magnetic field curvature of
∂2B
∂z2 = −103(1)mG/mm2. This curvature provides the dominant longitudinal poten-
tial for our 85Rb atoms which, according to the relation ω2

z = µBgFmF
m85Rb

∂2B
∂z2 (where m85Rb

is the mass of 85Rb) gives an inverted harmonic potential along the waveguide with
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(anti) trapping frequency ωz = 2πi × 3 Hz where i =
√
−1. It is important to note

that the change in magnetic field due to this curvature along the waveguide corre-
sponds to a few percent of a Bohr radius a0 across the condensate, so the scattering
length of the cloud is spatially constant to a good approximation.

Figure 7.3: (Color online) Measurement of the magnetic field curvature in the waveg-
uide via r.f. spectroscopy. The magnetic field at each position is determined from the
frequency required to drive inter-mF transitions on an extended cloud of atoms in
the guide. The red line is a parabolic fit to the data, indicating a repulsive harmonic

potential with frequency ωz = 2πi× 3 Hz along the waveguide.

7.2 Soliton Formation

Solitons can arise in any system which is described by a weakly nonlinear dispersive
partial differential equation, and in our case this equation is the Gross-Pitaevski
equation, which describes the mean-field evolution of a BEC:

ih̄
d
dt

Ψ =
h̄2

2m
∇2Ψ + VΨ + U|Ψ|2Ψ (7.2)

where V(x) is the trapping potential at a given point in space, and U = 4πh̄2a
m is the

interaction parameter for two-body, s-wave collisions.

Soliton formation, stability and dynamics forms an enormous field of rich and diverse
study which is well reviewed in Ref. [141]. Solitons appear in non-linear optical
systems [133], in which the analog equation to Eq. (7.2) is that of the electric field
propagating in, for example, an optical fibre with non-linear permittivity [83],

−ih̄
d
dz

â =
1
2

d2

dt2 â + N2|â|2 â (7.3)

where â is the annihilation operator for a photon in the fibre at position z, analogous
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to the annihilation operator of an atom Ψ̂ which has been averaged to the mean-field〈
Ψ̂
〉
= Ψ in Eq. (7.2) above. Solitons also feature in oceanography [126], magnetic

materials [143, 236], financial markets [156], and biological systems [117] among oth-
ers. Depending upon whether the solitary propagating wave is a crest or a trough, it
is known as a bright or a dark soliton respectively. So a light pulse propagating dis-
persionlessly through either vacuum or a non-linear optical material, or a condensate
propagating dispersionlessly through time would both be called bright solitons, as
would a water-wave propagating dispersionlessly along a channel. An example of a
dark soliton might be a dip in the density profile of an elongated condensate which
propagates along the condensate [88], a dip in the density of water propagating along
a channel [44], or a dark shadow propagating dispersionlessly in an otherwise-bright
non-linear optical fibre [76, 140].

Let us examine Eq. (7.2) in more detail. Say, for simplicity, that the condensate is in
free space so that there is no trapping potential, V = 0; and there are no interactions
so U = 0 also. Then the dispersion is simply that of a wave function in free space

ih̄
d
dt

Ψ =
h̄2

2m
∇2Ψ. (7.4)

If we instead set the interaction constant U to some negative value, and set the shape
of the condensate density |Ψ|2 such that the interaction term and the kinetic dis-
persion term cancel out each other’s positional dependence, and look for stationary
solutions Ψ(r, t) = ψ(r)e

iµt
h̄ we find

µψ =
h̄2

2m
∇2ψ + U|ψ|2ψ (7.5)

and we thus have our solitary propagating wave - a soliton. Equation (7.5) has the
following exact soliton solution in 1D:

ψ(z) =
1√
lz

sech
(

z
lz

)
. (7.6)

In 3D however, solitons are inherently unstable. Nevertheless, following Ref. [42],
and motivated by the 1D solution above we can look for elongated solitonic solutions
to the 3D GP equation with a transverse harmonic confining potential. We assume a
stationary trial wave function of the form

ψ(ρ, z) =
1√

2πl2
ρ lz

exp

(
− ρ2

2l2
ρ

)
sech

(
z
lz

)
(7.7)

which allows a gaussian radial profile, with a longitudinal shape given by the solu-
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tion in one dimension shown in Eq. (7.6).

Substituting this into the Gross-Pitaevski energy functional

EGP =
∫

d3r

{
h̄2

2m
|∇ψ|2 + gN

2
|ψ|4 + m

2

[
ω2

ρ(x2 + y2) + ω2
z z2
]
|ψ|2

}
(7.8)

allows us to obtain the following energy surface with respect to both the axial and
radial size of the condensate,

ε =
1

2γ2
ρ

+
γ2

ρ

2
+

1
6γ2

z
+

π2

24
λ2γ2

z +
α

3γ2
ργz

(7.9)

Figure 7.4: The energy surface defined by Equation (7.9) in dimensionless units.
(a) Parameters similar to our experiment with ωρ = 2π × 70 Hz, ωz = 2πi × 1 Hz,

N = 1.5× 104 atoms, a = −30a0, showing a saddle point at γρ = lρ

√
mωρ

h̄ ≈ 0.9

and γz = lz

√
mωρ

h̄ ≈ 40, corresponding to lz ≈ 50 µm, the longitudinal width of
our soliton. (b) Parameters near those of the 7Li soliton experiment of Ref. [138], as

shown in Fig 3. of Ref. [42].

where all the variables have been rescaled to the radial harmonic oscillator frequency
ωρ or harmonic oscillator length σρ =

√
h̄

mωρ
, i.e. energy ε = E

h̄ωρ
, radial width

γρ =
lρ
σρ

, axial width γz = lz
σρ

, trap aspect ratio λ = ωz
ωρ

= i|ωz|
ωρ

and interaction

parameter α = Na
σρ

.

Soliton solutions are found at stationary points (∇ε = 0) on this energy surface.
Ref. [42] focussed upon the stable stationary point found at a minima of the energy
surface, which only exists for a very limited parameter range (see Fig. 1 of that
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paper). Our experiment has a much larger interaction parameter |α| ≈ 12 than
anything in this region of stability (which is bounded by |α| . 0.8). In fact, by
looking at the energy surface of Eq. (7.9) for parameters similar to those used in this
experiment, we see that we are at a different stationary point, a saddle point, shown
in the centre of Fig. 7.4 below (c.f. Fig. 2 of Ref. [42]).

Experimental studies have previously been done on both bright and dark solitons.
In cold atom experiments, dark solitons are a dip in the density profile of a Bose-
Einstein condensate [66, 36, 88]. Systems of dark-bright soliton pairs have also been
shown in experiments [20, 247]. On the contrary, studies of bright matter wave
solitons have been relatively few, despite offering similarly nuanced and interesting
physics to dark solitons. Early work observed the break-up of attractive 7Li and 85Rb
condensates into soliton trains [229, 230, 57]. A single 6000-atom 7Li bright soliton in
an optical waveguide was created in 2002 [138] and recently, a pair of neighbouring
100-atom 7Li bright solitons were formed in a magnetic waveguide [166]. A 2000-
atom 85Rb soliton has been studied while colliding with a repulsive barrier [159].
Among many possible applications, a bright-soliton-based matter-wave interferom-
eter has been proposed as a method to test the fine details of atom surface interac-
tions [68], and soliton collisions have been suggested as a mechanism for creating
Bell-type entangled states [95]. As a tantalising precursor to detecting these entan-
gled states, phase-dependent collisions at low velocity between two 28,000-atom 7Li
solitons has been studied using minimally destructive imaging, showing the effect
of phase on the collision dynamics [178]. Additionally, bright-solitonic atom inter-
ferometers hold great promise for precision measurements [191, 177], including mea-
surements of gravity [7, 187], rotations and magnetic field gradients [240, 59], and
tests of the weak equivalence principle [235, 223, 211, 3].

How do we experimentally find the soliton point a = as in our BEC of 10,000 atoms
of 85Rb? The condensate is adiabatically loaded into the waveguide at a = 5a0, before
the scattering length is instantaneously changed to a given value a. We take pictures
after varying lengths of time, as the BEC expands in the waveguide. In Fig. 7.5 (a),
the width of the cloud after 90 ms of expansion time is plotted, showing that for our
parameters, the minimum expansion is achieved at as = −30a0. Fig. 7.5 (b) shows
that at this scattering length, the condensate maintains a constant width for up to
50 ms of expansion. Thus as = −30a0 is the soliton point for the parameters of this
system. This optimal value will of course depend upon density and the dimensions
of the cloud, and the geometry of the (anti-)trapping potential.
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Figure 7.5: (a) Diagram illustrating the condensate’s expansion along the waveguide.
The width σz is the standard deviation of a gaussian fit to the ballistic expansion
image. (b) Longitudinal width of a matter wave as a function of scattering length,
measured after 90 ms of free expansion in the guide. Green dashed lines are to guide
the eye. The soliton parameter of as = −30a0 is seen to minimise this expansion. (c)
Comparison of longitudinal expansion along the guide for three different scattering
lengths: the repulsive self-interaction of a = 260a0, the low interaction case of a = 5a0
and the soliton parameter of as = −30a0. The dashed lines are parabolic fits to extract
the acceleration of cloud width. For a = as this acceleration is consistent with zero.

Error bars shown in both (a) and (b) are statistical.
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7.3 Soliton Interferometry

To investigate the properties of the soliton, we now construct a Mach-Zehnder in-
terferometer along the waveguide using two-photon (2h̄k) Bragg transitions. The
scattering length was abruptly changed from a = 0, 0.4 ms before the first π/2 pulse
and back to a = 0, 0.4 ms after the last π/2 pulse. Of course for long interferometer
times, the two arms of the interferometer will separate, so that the density will be
halved in each cloud. This means that neither cloud will have sufficient attractive
interaction to remain solitonic, and in a future scheme this should be corrected for
by making the scattering length more negative as the clouds separate to compen-
sate. However, in our experiment the two clouds do not have enough time to fully
separate. The separation of the peaks of the two clouds is given by

d = vT (7.10)

=
2h̄k

m85Rb
T (7.11)

= 12 µm/ms× T (7.12)

At the longest interferometer time reported here, T = 3.5ms, the clouds separate
by 42 µm, about the width of each cloud (as shown in Fig. 7.5 (c)). For the shorter
interferometer times the clouds are mostly overlapped throughout the interferometer
sequence, maintaining the density required to keep the soliton point consistent. No
significant systematic loss of atoms is measured over the range of s-wave scattering
length observed. In Figure 7.6 is shown an example interference fringe in Nrel at
as = −30a0 scattering length, together with the raw absorption images below. Each
fringe is fit with a function

Nrel =
V
2

cos
(

Φ + φ π
2

)
+ c (7.13)

where V is the fringe visibility, Φ is the interferometric phase, φ π
2

is the applied phase
of the final beamsplitter, and c is the fringe offset.

Figure 7.7 (a) shows the fringe visibility V of a T = 1 ms and a T = 2.7 ms Mach-
Zehnder interferometer as a function of the s-wave scattering length a during the
interferometer sequence. The sharp peak in the interferometer visibility V occurs
exactly at as = −30a0, the ‘soliton parameter’ identified from the expansion data in
Figure 7.5, which therefore shows a solitonic matter wave very clearly outperforming
a non-interacting cloud. We attribute the increase in fringe visibility seen around
a = as to the lack of spatial dispersion as seen in Fig. 7.5 (b). Reduced longitudinal
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Figure 7.6: An example fringe taken at the soliton point a = as for an interferometer
time of T = 1 ms. As the phase φ π

2
of the last beamspliter is varied, the relative

number of atoms in the |0h̄k〉 state traces out a fringe. Also indicated are the impor-
tant parameters extracted from the fit, the fringe visibility V and the interferometric

phase Φ. At the bottom the raw absorption images after each run are shown.

momentum width has been shown to increase visibility in atom interferometers in
general due to the frequency dependence of the Bragg transition [233] and in our
system in particular, reduced spatial dispersion has also been shown to increase
mode-matching and therefore fringe visibility in the context of delta-kick cooling
(Fig. 6.3(e) in Section 6.4 of this thesis). Here, a more striking visibility peak due
to the jump in scattering length from zero to the s-wave soliton parameter is also
due to effectively freezing out the matter wave dispersion during the interferometer,
increasing mode-matching in both position and momentum by conserving the phase-
space density of each atom cloud. We hypothesise that this causes the interference
to be more robust against visibility degradation due to any spatial inhomogeneity of
the confining potential. Fringe visibility enhancement is also predicted for a solitonic
interferometer due to collisional many-body entanglement [94], which has already
been demonstrated for the case of an optical soliton interferometer [83]. However
we do not expect to see this here as our Bragg beamsplitters should not cause any
entanglement.

The interferometric phase Φ for T = 1 ms as measured in Fig. 7.7 (b) is interesting as
it seems to show a constant phase shift for scattering lengths below a = 0, implying
there is negligible mean field shift in this case. The data in the inset of the same
figure, which shows Φ for a T = 2.7 ms interferometer as a function of scattering
length, would seem to contradict this theory as the phase abruptly drops by around
200 degrees above a = −20a0. However, comparing to the inset of Fig. 7.7 (a) we
see that these are fringes with quite small visibilities of V < 0.05 and so perhaps
the phase of these particular points should not be trusted. It would be instructive
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Figure 7.7: Fringe visibility (a) and interferometer phase Φ (b) as a function of scat-
tering length a during the interferometer. The main plots are for interferometer time
T = 1 ms, and the insets are data taken on a different day with interferometer time
T = 2.7 ms. The grey vertical lines mark the soliton point of as = −30a0 in each
graph. The dashed lines in (a) are a guide to the eye. Error bars in both (a) and (b)

are 1 s.d. confidence intervals on that parameter from the fit to each fringe.

therefore to look at how the interferometer behaves as a function of time T for a given
scattering length, and this is the data presented in Figure 7.8.

In Figure 7.8 (a), the fringe visibility as a function of T is plotted for both a non-
interacting BEC with a = 0 and a soliton with a = as. The coherence time τ of the
interferometer is measured by a gaussian fit (see Refs [176, 114]) of the form

V = V0 exp
(
− ln 2

T2

τ2

)
(7.14)

= V0 2−
T2

τ2 (7.15)

which is defined such that τ is the half-maximum decay time of the visibility V . The
coherence time τ of the soliton interferometer has a half-maximum decay time of
2.3(1) ms. This is ∼ 2.5 times as long as the non-interacting interferometer, with a
coherence time of τ = 0.9(1)ms. This again shows the clear advantage afforded by
the solitonic matter wave. Figure 7.8 (b) shows the interferometric phase measured
as a function of interferometer time T for the solitonic and non-interacting interfer-
ometers. Again the phase shift appears to agree for small T, but diverges around 1.5
to 2 ms as the visibility of the non-interacting interferometer decays.

The repulsion observed previously [229, 230, 4] between solitons with a phase dif-
ference of π is not seen here. Ref. [183] suggests that this behaviour is only ob-
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Figure 7.8: (a) Fringe visibility as a function of interferometer time T for the the
soliton point of a = as (circles, solid line) and the non-interacting cloud at a =
0 (triangles, dashed line). The lines are gaussian fits to the coherence time τ at
each scattering length (measured by the half-maximum decay in visibility) with τ =
2.3(1)ms and τ = 0.9(1)ms for the soliton and the non-interacting cloud respectively.
(b) Measured interferometric phase Φ for the soliton interferometer (open circles,
solid line) and the non-interacting cloud (triangles) as a function of interferometer
time. The non-interacting phase measurement at T = 2 ms should probably not have
too much weight attached to it as the visibility for that fringe is very low, at 0.8%.
Error bars in both (a) and (b) are 1 s.d. confidence intervals on that parameter from

the fit to each fringe.
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served for low relative velocities (∆v < 1 mm/s) whereas in our interferometer
∆v = 2h̄k/m85Rb = 12 mm/s. This conclusion is supported by a recent experimental
result on soliton collisions at ∆v ≈ 4 mm/s [178], which did not see a repulsion.

A quadratic fit to the phase data for the soliton is consistent with the cloud acceler-
ating at |a| = 5.2(1)× 10−2 m/s−2 due to both a slight tilt in the optical waveguide
potential and the magnetic field gradient at the position of the atoms. The phase
shift is quadratic because a Mach-Zehnder atom interferometer with 2h̄k momentum
separation is sensitive to external acceleration a according to Φ = 2k · aT2 (see chap-
ters 3 and 6) . As the interferometer only samples a small region of the potential in
Fig. 7.3 (b), the center-of-mass acceleration is to a good approximation constant. This
is equivalent to a first-order Taylor series approximation to the potential, around the
point at which the BEC is located.

7.4 Summary and Future Directions

We have demonstrated that a solitonic matter-wave optimises the choice of scatter-
ing length to give the highest visibility and the longest coherence time for a Mach
Zehnder atom interferometer. Of course this technique is only practically applicable
to clouds starting at sufficient density so that the collisional interactions play a sig-
nificant role. The use of a soliton in an atom interferometer is another example of
dispersion management, much like the expansion and delta-kick cooling shown in
Chapter 6 maximises the visibility of a large momentum transfer atom interferometer.

This new system offers an intriguing array of both fundamental and applied future
research directions. Studies of soliton collision dynamics [178] in a system with an
interferometric probe offer the possibility to look for many-body entanglement [94].
A time varying scattering length could also allow investigation of squeezing en-
hanced interferometry [129, 110, 77]. It will also be possible to look for breather
solitons [162] and yet more complicated soliton-like oscillations [40]. Applications to
precision measurement will require an in-depth study of the phase evolution of the
solitons as a function of density and scattering length, especially for the interesting
domain highlighted in this chapter of phase evolution at negative scattering lengths.
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Chapter 8

Dual Isotope Interferometry

The work discussed in this chapter is published as

A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer
C. C. N. Kuhn, G. D. McDonald, K. S. Hardman, S. Bennetts, P. J. Everitt, P. A. Altin,
J. E. Debs, J. D. Close, and N. P. Robins.
New J. Phys. 16, 073035 (2014).

8.1 Equivalence Principle Measurements

There are many theories which attempt to unify General Relativity with the rest of
modern physics [111, 139, 154, 99]. These theories typically imply some kind of
violation of the assumptions underpinning General Relativity. One goal of a dual-
isotope interferometer may be to check for any violations of the Weak Equivalence
Principle (WEP). This principle states that all small test masses will experience the
same acceleration due to a given gravitational field, or equivalently, that gravitational
mass is equal to inertial mass. In the case that this principle is violated and the
acceleration for each small test mass differs, this violation is quantified by the Eötvos
parameter η, which is the difference in acceleration ∆a = a1 − a2 divided by the
average acceleration of the two masses 〈a〉 = (a1 + a2) /2,

η =
∆a
〈a〉

= 2
a1 − a2

a1 + a2
. (8.1)

A violation of the WEP, η 6= 0, is expected at the η ≈ 10−12 − 10−17 level [99].
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The best measurements of η so far are a torsion balance experiment comparing the
acceleration of test masses consisting of Titanium and Beryllium due to the earth’s
gravity [206], and a lunar laser ranging experiment looking at the relative acceleration
of the earth and moon due to the gravitational pull of the sun [243]. Both these
experiments measure down to the η ≈ 10−13 level. Atom-interferometric experiments
have compared the acceleration due to gravity of different atomic species down to the
η ≈ 10−7 level by comparing the isotopes 85Rb and 87Rb [89, 30], 87Sr and 88Sr [234],
or 87Rb and 39K [208]. A comparison between an atom interferometric gravimeter
using 133Cs and a falling corner-cube gravimeter reached the level of η ≈ 10−8 [186].
Ground-based experiments are in development for measurements comparing 6Li and
7Li to the level of η ≈ 10−14 [112, 119], and for comparing 85Rb and 87Rb for much
longer drop times, aiming for an accuracy of η ≈ 10−15 [69].

Proposed microgravity and space-based missions include STE-QUEST [212, 3, 211]
and QUANTUS [175, 195]. The QUANTUS-II project will use a 41K/87Rb dual-
species BEC combination with a maximum micro-gravity interferometer time of 6
seconds, while the entire apparatus is on a parabolic trajectory in a drop tower.
Closely related is the MAIUS project which aims to run an atom interferometer on
the same two species on a sounding rocket. The STE-QUEST proposal plans to use
the 85Rb/87Rb combination in microgravity to eliminate vibrational effects and pro-
long the drop time. They also plan to use BEC sources of each isotope and multi-stage
delta-kick cooling (see Section 6.4) to prepare their source clouds for the interferom-
eter. They are aiming for a sensitivity of η ≈ 10−15 over four years of data collection.

As these microgravity and space-based missions will rely on simultaneous interfer-
ometers performed upon each of two overlapping condensates, it is worthwhile to
examine experimentally some of the difficulties which may be faced by this particular
combination.

8.2 Dual Species condensate

Only minimal modification of our experimental procedure is required to produce
dual species 87Rb/85Rb condensates. If the final stage of evaporation in the crossed
dipole trap is tuned so that not all of the 87Rb is lost, we can form a dual condensate,
as discussed in Chapter 4. In this case we have a BEC of both 85Rb and 87Rb coexisting
in the trap at the same time, and we can simultaneously perform interferometry
on both condensates. As each isotope has a different mass, the Bragg resonance is
slightly shifted. The recoil frequency ωr for either isotope is given by

ωr ≡
h̄|k|2
2m

(8.2)
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and since their mass differs by 2.3%, the resonant Bragg transition frequency does
as well. For low Bragg order this is no problem for driving a transition in both
isotopes simultaneously. However, this will introduce a relative phase shift between
the isotopes which increases linearly in time, in proportion to the isotopic detuning
which will be shown in Equation (8.6).

8.3 Simultaneous Interference Fringes

By running an interferometer with both isotopes present, driven by the same optical
lattice at the same time, we can generate simultaneous fringes as shown in Figure 8.1
(a) and (c). We can represent these fringes mathematically by

87Nrel =
V87

2
cos

(
Φ87 + nφ π

2
+ δ87

)
+ c87 (8.3)

85Nrel =
V85

2
cos

(
Φ85 + nφ π

2
+ δ85

)
+ c85 (8.4)

where iNrel is the relative number of atoms in the 0h̄k state, Vi is the visibility, Φi is
the interferometric phase and ci is the fringe offset for the iRb isotope. The applied
laser phase on the last pulse nφ π

2
depends upon the Bragg order n but is common to

both interferometers, whereas the phase noise on each fringe, δi, can be correllated
in various different ways or completely uncorrellated depending upon what causes
it. In general it is possible in such simultaneous experiments to get greater precision
on the relative phase between the two interferometers. This is done by plotting one
fringe against the other to form an ellipse, as in Figure 8.1 (b). In this case the curve
is parametrised by the phase φ π

2
. Common mode noise such as a vibration of the

optical lattice is removed in such a scheme as both isotopes will experience the same
phase shift, i.e. δ87 = δ85. As this amounts to relabelling the implicit parameter φ π

2
,

this results in the data point moving further around the ellipse, but not moving off
it, despite not lying on either sinusoidal fringe. As we do not see much less noise
plotting the ellipse, this means our dominant noise sources are affecting the phase of
each isotope differently. A more general model might say that instead of one-to-one
phase noise on each isotope there might be some more general correlation δ87 = bδ85

for some ratio b ∈ R. In this case the ellipse plot would still look quite noisy, despite
a perfect correlation between the phase noise of each isotope. If instead the data is
plotted in 3D as in Fig. 8.1 (d), noiseless data would turn up on an elliptical helix,
and the general correlated noise described above would fan out the data points onto
a surface in which the elliptical helix is embedded. This is illustrated in Fig. 8.2
with simulated data. Of course if δ85 and δ87 are uncorrelated then no fancy analysis
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Figure 8.1: The simultaneous interferometer fringes acquired from a T = 0.4 ms
interferometer for 87Rb and 85Rb are shown in (a) and (c) respectively. Shown in (b)
is the ellipse generated by plotting the data in (a) and (c) parametrically in terms of
the phase φ π

2
we apply to the final beamsplitter. This ellipse plot should eliminate

the effect of common-mode phase noise which causes a 1-to-1 phase shift in each
interferometer. In (d) the data is shown in all three dimensions, with the projections
(a), (b) and (c) shown on the “walls” of the plot. In the case of more general correlated
phase noise, e.g. anti-correlated phase noise, the data will lie upon a complicated 3D
surface in (d). Red dots are experimental data points, and the blue line is from the
fit to each sinusoid in (a) and (c). The green crosses are experimental data points
rejected as outliers by our ellipse fitting algorithm, which excludes those points with
a distance to the nearest point on the ellipse which is 3 standard deviations or more

higher than the mean distance to the ellipse.
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Figure 8.2: (a) Simulated data for simultaneous 2h̄k interferometers with perfectly
anti-correlated phase noise on each fringe, i.e. δ85 = −δ87. This simulated data
is plotted the same as the experimental data in Fig. 8.1 (d). It can be seen that
the ellipse plot (on the ‘floor’) does not remove anti-corellated noise from the data.
(b) The elliptical helix (along which the data would lie if there were no noise) is
embedded in a 3D surface which has been parametrically plotted here. The shape
of the 3D surface depends upon the coefficient b which specifies the relationship
between phase noise on one interferometer and phase noise on the other. Thus a fit
to the shape of the 3D surface can yield both the removal of unwanted noise for a
general correlation b, and the value of b itself. This plot is for b = −1, i.e. perfectly

anti-correlated phase noise.
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Figure 8.3: (a) The ellipse for T = 0.4 ms with relative phase ∆Φ = 65± 3 degrees.
Red dots are experimental data, while green crosses have been excluded by the out-
lier detection algorithm. The blue, green and oranges ellipses have respectively the
minimum, best and maximum estimates of relative phase ∆Φ. (b) The relative phase
∆Φ = Φ85 − Φ87 is adjusted and we calculate the sum of square distances of each
point to the ellipse, Σd2

i . Inset: The minimum in Σd2
i is our choice of the best relative

phase. The uncertainty is generated by finding the angles ∆Φ for which the total
square distance from the ellipse Σd2

i is 10% larger than the minimum.

technique can reduce the noise beyond the improvement due to simple statistics as
increasing amounts of data is taken.

Our ellipse fitting technique (illustrated in Fig. 8.3) is a multi-step algorithm.

1. Algebraic Fit. First we perform an algebraic fit to the ellipse from the data
points using a direct least-squares fit [84, 54]. Although this is computationally
efficient, it does not reject outliers, and does not provide an estimate of the
uncertainty of the relative phase ∆Φ.

2. Scan Relative Phase. We then scan the relative phase estimator ˆ∆Φ over all pos-
sible values in the range ˆ∆Φ ∈ [0, π). For each value of ˆ∆Φ we compute nu-
merically the distance di of each data point to the nearest point on the ellipse.
Plotted in Figure 8.3 (b) is the sum of the squared distances from each point
to the ellipse Σd2

i , as a function of the relative phase estimator ˆ∆Φ. We take
the value of ˆ∆Φ which minimizes Σd2

i as the best estimate of ∆Φ. We also take
the values of ˆ∆Φ above and below the optimum, which produce a Σd2

i which is
10% higher than the minimum value, as an estimate of the uncertainty in ∆Φ
using the ellipse fitting technique.

3. Reject Outliers. From the list of distances di of each data point i from the ellipse
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Figure 8.4: (a) The interferometric phase Φ of each isotope’s interferometer is mea-
sured as a function of interferometer time T by a simple sinusoidal fit. (b) The relative
phase ∆Φ = Φ85 − Φ87 is computed for each T by two methods; subtraction of the
interferometric phases recorded in (a), or by a fit to the ellipse as shown in Fig. 8.3 (a).
(c) The difference between the relative phase ∆Φ as computed using each of the two

methods shows that they agree within uncertainty.

with our optimal choice of relative phase ∆Φ we reject all data points for which
di is more than 3 standard deviations away from the mean. Rejected data points
are kept and plotted but not fitted to in the remaining steps.

4. Iterate. Steps 1 and 2 are repeated, now that the outliers have been rejected.

The result of this fitting technique is shown in Figure 8.3 (a) for a T = 0.4 ms, 8h̄k
interferometer on both isotopes. The red dots are the data points, while green crosses
are the rejected outliers. The green ellipse is the optimal fit, and the uncertainty in
relative phase is represented by the orange and blue ellipses which have a relative
phase of (optimal+uncertainty) and (optimal-uncertainty) respectively. It should be
noted that our fitting algorithm is a post-processing technique, and is not computa-
tionally efficient for real-time processing. Others have used a Bayesian technique for
the purpose of real-time processing [228].

A comparison between the relative phase as computed using this ellipse fitting tech-
nique, and that calculated from a simple sinusoidal fit to each isotope’s interference
fringe directly is shown in Figure 8.4 (b). Both methods calculate the same relative
phase to within uncertainty, as shown in Fig. 8.4 (c) where the difference between the
two is plotted.
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8.4 Systematic phase shifts between isotopes

It is perhaps interesting that the relative phase between the two isotopes’ interference
fringes [in Figure 8.4 (b)] evolves roughly linearly in time. What could explain this
behaviour? Here I present some possible simple explanations.

Because the recoil frequency for each isotope differs by ∆ωrec = h̄k2

2

(
1

m85
− 1

m87

)
, the

isotopic detuning between the 2n-photon Bragg resonance of 85Rb and 87Rb is given
by

∆iso = 4n∆ωrec (8.5)

= 2nh̄k2
(

1
m85
− 1

m87

)
(8.6)

This will lead to a differential phase shift between the isotopes which will increase
linearly in time as ∆Φiso = ∆isoT. For an 8h̄k interferometer this works out to be
∆iso = 558 rad/s, which is the same order of magnitude as the measured differential
phase shift [shown in figure 8.4 (b)] which is approximately linear, increasing at
434 rad/s.

Another possible explanation is a difference in initial velocity of the two isotopic
BECs at the beginning of the interferometer. This could arise due to e.g. the differ-
ent response to magnetic field gradients present as the BECs are released into the
waveguide, before the beginning of the interferometer. This will cause a Doppler
shift between the relative frequencies of each cloud as ∆∆v = k · ∆v, and thus a
relative phase shift of ∆Φ∆v = kT · ∆v, again linear in interferometer time.

Of course, there are other complicating factors such as the mean-field interactions
between 87Rb atoms, and the inter-isotope mean field interactions between 87Rb and
85Rb atoms. The phase shift due to these effects will be density dependent. One
way to investigate these shifts is to look at the phase of just the 85Rb interferometer,
with its self-interaction turned off (a85 = 0), while varying the number of co-incident
87Rb atoms. This measurement is shown in Figure 8.5 for a 2h̄k interferometer. For
these short interferometer times we can approximate that the clouds with different
momentum states stay largely overlapped. The GPE for 85Rb becomes

−ih̄
∂

∂t
Ψ85 =

(
− h̄2

2m85
∇2 + V + Uint

)
Ψ85 (8.7)
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Figure 8.5: (a) We found we were able to measure the density of 87Rb in a dual-species
MZ interferometer by looking at the phase of the 85Rb interferometer. Phase shift on
85Rb (as ∼ 0) fringes as a function of interferometer time, T, in the waveguide, for
a varying number N87 of 87Rb atoms co-incident. The lines are a fit of the form
Φ = αT2 to each set with constant N87. (b) The value of α from the fits in (a) as a
function of N87. The dashed and solid lines are two simple models developed in the

text, with no free parameters, and no fitting involved.

In the axial direction z the external potential V is roughly zero, so the main potential
felt by the 85Rb atoms comes from the interaction with 87Rb, in the term Uint [192]

Uint =
4πh̄2a85/87

m86
|Ψ87|2 (8.8)

where m86 is just a shorthand for the reduced mass

m86 = 2
m85m87

m85 + m87
(8.9)

As there are ≈ 2× 104 85Rb atoms and up to 105 87Rb atoms, let us assume first that
the 85Rb has no impact on the density profile of the 87Rb condensate in trap. In that
case the density profile will be approximately Thoms-Fermi (TF),

|Ψ87|2 =
m87

4πh̄2a87

(
µ87 −Vtrap

)
(8.10)
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Figure 8.6: A ‘miscible’ initial condition in our trap, with a85 = 1000a0, a87 = 100a0
and a85/87 = 212a0 and therefore µmisc = 2.2. Computed with no asymmetry due to
gravity or magnetic response of the two isotopes, using a 3D cylindrically symmetric
grid. The density of 87Rb, |Ψ87(r, z)|2, is shown in (b) as a function of the radial
coordinate r and axial coordinate z. Likewise the density of 85Rb, |Ψ85(r, z)|2, is
shown in (c). In (a), both densities have been integrated along z and plotted as a
function of r. It can be seen that the 87Rb condensate is at the bottom of the harmonic
trap, as it has both the heavier mass and the smaller self-scattering length, making it

more dense than the 85Rb.

for the in-trap potential

Vtrap =
m87

2
(
ω2

r r2 + ω2
z z2) (8.11)

and chemical potential

µ87 =
1
2

(
15N87a87h̄2ωzω2

r
√

m87

)2/5
(8.12)

This density profile is a paraboloid with a spatial extent in each direction of the TF
radius

rtf =
1

ωr

√
2µ87

m87
(8.13)

ztf =
1

ωz

√
2µ87

m87
(8.14)

The miscibility criterion µmisc for the two condensates is given by

µ2
misc =

a85a87

a2
85/87

(8.15)
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Figure 8.7: A simple model is to assume that the 87Rb condensate has roughly a
Thomas-Fermi distribution. Due to some asymmetry (such as different gravitational
sag, or different magnetic resonses of each isotope) the smaller 85Rb condensate is
resting on one side of the 87Rb condensate, and so when the two are released into
the waveguide, the 85Rb experiences a force dependent upon the density gradient of

87Rb.

When this is less than one, then the condensates are said to be immiscible. Roughly
speaking, they are repelled from one another more than they are repelled from them-
selves. In our case with a85 = 0, a87 = 100a0 and a85/87 = 212a0 then µmisc = 0 and
the clouds will not be overlapped in equilibrium. If the miscibility criterion µmisc is
less than one (i.e. when a85 > 450a0), the condensates will be found to be overlap-
ping in places. For example, with a85 = 1000a0, a87 = 100a0 and a85/87 = 212a0 then
µmisc = 2.2 and the two condensates should be overlapped in some places. This ‘mis-
cible’ choice of scattering length is shown in Figure 8.6 as the equilibrium density
profiles of the two condensates in our trap, which was numerically computed using
a cylindrically symmetric 3D GPE simulation [13]. It can be seen despite the misci-
bility parameter, there is only minimal overlap between the two condensates due to
the large difference between the scattering lengths of each.

If there is some asymmetry, for example a slight difference in the equilibrium position
of 85Rb and 87Rb due to the combined optical, magnetic and gravitational potential,
then the two condensates will not be perfectly concentric. We will assume the 85Rb
condensate is sitting on one side of the 87Rb condensate we have described, as shown
in Fig. 8.7. Now if we treat the 85Rb condensate as a point particle, being affected
by the potential energy generated by the density of 87Rb, Uint, and located at the
Thomas-Fermi length in the axial z direction, it will experience an acceleration away
from the 87Rb condensate at the rate
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a = − 1
m85
∇Uint

∣∣∣∣
r=0,z=zt f

(8.16)

= −4πh̄2a85/87

m85m86
∇ |Ψ87|2

∣∣∣∣∣
r=0,z=zt f

(8.17)

=
m87

m85m86

a85/87

a87

d
dz

Vtrap

∣∣∣∣
z=zt f

ẑ (8.18)

=
m2

87
m85m86

a85/87

a87
ω2

z zt f (8.19)

=
m87

m85

m87
m85

+ 1

2
a85/87

a87
ω2

z zt f ẑ (8.20)

This acceleration will be measured by the interferometer as a phase shift

Φ = 2nk.aT2 (8.21)

= nk.ẑT2 m87

m85

(
m87

m85
+ 1
)

a85/87

a87
ω2

z zt f (8.22)

and so the quadratic phase coefficient is

α =
Φ
T2 (8.23)

= 2nk.ẑ
m87

m85

(
m87

m85
+ 1
)

a85/87

a87
ω2

z zt f (8.24)

This is the dashed curve plotted in Fig. 8.5 (b) for our parameters, and it scales as
∝ N1/5

87 , the same as zt f . Of course the 85Rb cloud is not always much smaller than the
87Rb cloud. When they have roughly the same number of atoms, we could perhaps
treat the 85Rb cloud as a point particle further up on the TF profile of the 87Rb BEC.
To account for this we can say that it is located at a point

z =
N87

N85 + N87
zt f (8.25)

along the z-axis. This results in a quadratic phase coefficient of

α =
Φ
T2 (8.26)

= nk.ẑ
m87

m85

(
m87

m85
+ 1
)

a85/87

a87

N87

N85 + N87
ω2

z zt f (8.27)

which is the solid curve plotted in Fig. 8.5 (b). It can be seen that the experimental
data lies between these two simple models. To confirm that this is the exact cause
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of the phase shift would require a full 3D GPE simulation involving the particular
asymmetry which offset the two condensates in the first place.

8.5 Summary

We have experimentally investigated some of the issues involved in simultaneous
dual-species interferometry. In particular with the 85Rb/87Rb combination, it is dif-
ficult to get a good spatial overlap between the two clouds. We have seen that the
effect of this spatial mismatch can be a density dependent mean-field phase shift
caused as the two clouds repel one another.

We have also seen that using the same optical lattice to Bragg diffract both isotopes
simultanously can cause a phase shift which is linear in time. This phase shift could
be used to make a measurement of the difference in recoil frequency between the
two isotopes, i.e. a precision measurement of their mass difference. These effects
will need to be considered in any future space mission aiming to make precision
measurements using this simultaneous lattice on dual-condensate configuration.
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Chapter 9

Conclusion and Outlook

This thesis has demonstrated the utility of an axial optical confinement for condensed-
atom interferometry (Chapter 5). This configuration will prove useful in defined-axis
acceleration sensors and compact, long-time interferometry. Two of the engineering
challenges which will be necessary for this to come to fruition are improved vibra-
tion isolation and a flatter optical waveguide potential, perhaps through the use of a
Bessel beam, or a hexagonal optical lattice [78] as the wave-guiding potential.

This thesis has introduced two dispersion management techniques to BEC interfer-
ometry, optical delta-kick cooling and the use of interactions to form a self-trapping
cloud known as a soliton. Optical Delta-Kick Cooling (Section 6.4) consisted of the
brief application of a harmonic optical potential after expansion of the atom cloud
in order to remove kinetic energy from the cloud. This technique was used to create
a low momentum-width source, which was critical in achieving Large Momentum
Transfer (LMT) of up to 80 photon recoils in an acceleration-measuring atom inter-
ferometer. Indeed without delta-kick cooling, the LMT result would not have been
possible as illustrated well in Figure 6.3 (e). The self-trapped soliton of Chapter 7 pro-
vided the curious result that it had higher visibility than all other choices of two-body
collisional interaction strength in an atom interferometer, illustrated in Figure 7.7 (a).
This was due to the constant phase-space density throughout the interferometer. Both
of these techniques will no doubt become common source preparation techniques for
atom interferometry in the future.

Having developed a large momentum transfer technique, it was employed to gen-
erate a new configuration of atom interferometer with a constant acceleration sepa-
ration between the two interfering arms (Section 6.7). This configuration allows the
acceleration sensitivity to scale as the cube of the interferometer time, allowing faster
measurements at the same sensitivity level (increasing bandwidth), or more sensitive
measurements with the same interferometer time. In the future, this could be im-
proved upon yet again through the use of rastered dipole traps to allow scalings of
T4 or even higher, as detailed in Section 6.8.
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Finally, this thesis looked at some of the confounding factors involved in simultane-
ous dual-isotope BEC interferometry in Chapter 8. An extension to the commonly
used ellipse-fitting technique to find the inter-isotope phase shift was proposed
which allows the removal of more general correlated noise than in the ellipse fit.
Also, a mean-field inter-isotope repulsion model was used to explain the measured
phase shift difference between 87Rb and 85Rb. Such issues will need to be considered
when planning for space-based experiments to test the Weak Equivalence Principle
such as STE-QUEST.

Promising directions for future study in 85Rb include looking for soliton breathing
modes, in which the self-trapped cloud undergoes axial width oscillations. It is
possible that these could allow improved atom interferometers [74]. Another future
direction would be to look at the phase difference as a function of time between
neighbouring solitons in a soliton train [178]. It has been predicted that their relative
phase should become uncorrelated over time due to beyond-mean-field effects [231].
A Ramsey-type atom interferometer (π/2− T − π/2) would be ideal for measuring
the relative phase between the neighbouring solitons in the train.
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