Bright Solitonic Matter-Wave Interferometer


We present the first realization of a solitonic atom interferometer. A Bose-Einstein condensate of 1×104 atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the s-wave scattering length of the 85Rb atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder interferometer is constructed by driving Bragg transitions with the use of an optical lattice colinear with the waveguide. Matter-wave propagation and interferometric fringe visibility are compared across a range of s-wave scattering values including repulsive, attractive and noninteracting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a noninteracting cloud.

Phys. Rev. Lett., (113), pp. 013002,
comments powered by Disqus